MODIFICATION OF FOOD POLYSACCHARIDE GUM ARABIC WITH POLYBASIC CARBOXYLIC ACIDS

UDC 54.057, 544.16

  • Alexander Sergeevich Kazachenko Reshetnev Siberian State University of Science and Technology Institute of Chemical Technologies; Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University; Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University Email: leo_lion_leo@mail.ru
  • Kristina Gurova Siberian Federal University Email: kristina.w.l@mail.ru
  • Yuri Nikolaevich Malyar Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences Email: yumalyar@gmail.com
  • Olga Yurievna Fetisova Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences Email: fou1978@mail.ru
  • Svetlana Andreevna Novikova Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences Email: sakozlova@gmail.com
  • Anton Aleksandrovich Karacharov Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences Email: karacharov@icct.ru
Ключевые слова: gum arabic, chemical modification, polycarboxylic acids, esterification, cross-linking, thermal properties, film formation

Аннотация

This work investigates the chemical modification of food-grade gum arabic (GA) using various polycarboxylic acids (citric, adipic, succinic, and oxalic) to enhance its functional properties for advanced applications. The esterification reaction was confirmed through a combination of elemental analysis and FTIR spectroscopy, which indicated the successful incorporation of carboxyl and ester groups into the polysaccharide structure. X-ray diffraction analysis revealed a further amorphization of the modified samples, confirming structural changes. Gel permeation chromatography showed a significant increase in the average molecular weight (Mw) and polydispersity of the derivatives, indicating both cross-linking and chain extension reactions. Atomic force microscopy demonstrated the formation of homogeneous, defect-free films consisting of spherical particles agglomerated into a continuous matrix. Thermal analysis (TGA/DSC) revealed modified thermal degradation patterns and showed that the oxalate derivative (GA-OxA) exhibited the highest thermal stability with a residual mass of 80.73% at 500 °C and the maximum activation energy for decomposition (295 kJ/mol). The results demonstrate the successful synthesis of tailored gum arabic derivatives with improved thermal properties and altered solubility, making them promising materials for applications in food packaging, edible coatings, and as carriers for controlled delivery systems.

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...

Биографии авторов

Alexander Sergeevich Kazachenko, Reshetnev Siberian State University of Science and Technology Institute of Chemical Technologies; Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University; Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

PhD, Associate Professor of Fundamental Chemistry Department

Kristina Gurova, Siberian Federal University

student

Yuri Nikolaevich Malyar , Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences

PhD, Senior Researcher

Olga Yurievna Fetisova, Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences

PhD, Researcher

Svetlana Andreevna Novikova, Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences

PhD, Researcher

Anton Aleksandrovich Karacharov, Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences

PhD, Researcher

Литература

Ashour M.A., Fatima W., Imran M., Ghoneim M.M., Alshehri S., Shakeel F. Molecules, 2022, vol. 27(4), 1171. https://doi.org/10.3390/molecules27041171.

Mohamed S.A., Elsherbini A.M., Alrefaey H.R., Adelrahman K., Moustafa A., Egodawaththa N.M., Crawford K.E., Nesnas N., Sabra S.A. Nanomaterials, 2025, vol. 15, 290. https://doi.org/10.3390/nano15040290.

Ward F.M. Cell and Developmental Biology of Arabinogalactan-Proteins. Springer, Boston, MA. 2000. https://doi.org/10.1007/978-1-4615-4207-0_20.

Mahendran T., Williams P.A., Phillips G.O., Al-Assaf S., Baldwin T.C. Journal of agricultural and food chemistry, 2008, vol. 56(19), pp. 9269–9276. https://doi.org/10.1021/jf800849a.

Churms S.C., Stephen A.M. Carbohydrate Research, 1970, vol. 15, no. 1, pp. 11–19. https://doi.org/10.1016/S0008-6215(00)80288-8.

Lee S.H., Md Tahir P., Lum W.C., Tan L.P., Bawon P., Park B.-D., Osman Al Edrus S.S., Abdullah U.H. Polymers, 2020, vol. 12, 1692. https://doi.org/10.3390/polym12081692.

Ragavan K.V., Hernandez-Hernandez O., Martinez M.M., Gutiérrez T.J. Trends in Food Science & Technology, 2022, vol. 119, pp. 45–56. https://doi.org/10.1016/j.tifs.2021.11.028.

Ermolenko I.N., Dovgalev S.I., Buglov E.D. et al. Pharm. Chem. J., 1973, vol. 7, pp. 105–108. https://doi.org/10.1007/BF00773538.

Fan L., Jiao W., Guo H. et al. J. Food Sci. Technol., 2025, vol. 62, pp. 1089–1100. https://doi.org/10.1007/s13197-024-06093-y.

Salihu R., Abd Razak S.I., Sani M.H., Wsoo M.A., Zawawi N.A., Shahir S. PloS one, 2024, vol. 19(12), e0312396. https://doi.org/10.1371/journal.pone.0312396.

Maiuolo L., Olivito F., Algieri V., Costanzo P., Jiritano A., Tallarida M.A., Tursi A., Sposato C., Feo A., De Nino A. Polymers, 2021, vol. 13, 2802. https://doi.org/10.3390/polym13162802.

Elnour A.A.M., Abdurahman N.H., Musa K.H., Rasheed Z. Int. J. Health Sci., 2023, vol. 17(6), pp. 4–5.

Malyar Y.N., Borovkova V.S., Kazachenko A.S., Fetisova O.Y., Skripnikov A.M., Sychev V.V., Taran O.P. Poly-mers, 2023, vol. 15(9), 1999. https://doi.org/10.3390/polym15091999.

Butt N.A., Ali T.M., Hasnain A. International journal of biological macromolecules, 2019, vol. 127, pp. 107–117. https://doi.org/10.1016/j.ijbiomac.2019.01.019.

Zehra N., Mohsin Ali T., Hasnain A. International journal of biological macromolecules, 2020, vol. 150, pp. 1331–1341. https://doi.org/10.1016/j.ijbiomac.2019.10.143.

Xie W., Shao L., Liu Y. J. Appl. Polym. Sci., 2010, vol. 116, pp. 218–224. https://doi.org/10.1002/app.31327.

Xu Y., Miladinov V., Hanna M.A. Cereal Chemistry, 2004, vol. 81, pp. 735–740. https://doi.org/10.1094/CCHEM.2004.81.6.735.

Luo Z., Zhou Z. Starch/Stärke, 2012, vol. 64, pp. 37–44. https://doi.org/10.1002/star.201100073

Kazachenko A.S. Vasilieva N.Y., Borovkova V.S. et al. Foods, 2021, vol. 10, no. 11, 2571.

Broido A. J. Polym. Sci., 1969, vol. 7 (Part A-2), 1761.

Опубликован
2025-11-28
Как цитировать
1. Kazachenko A. S., Gurova K., Malyar Y. N., Fetisova O. Y., Novikova S. A., Karacharov A. A. MODIFICATION OF FOOD POLYSACCHARIDE GUM ARABIC WITH POLYBASIC CARBOXYLIC ACIDS // Химия растительного сырья, 2025. № 4. С. Online First. URL: https://journal.asu.ru/cw/article/view/17880.
Раздел
Биополимеры растений