MODIFICATION OF THE FATTY ACID PROFILE AS ADAPTATION OF BARLEY TO OXIDATIVE STRESS

UDC 633.16:611.317

  • Ol'ga Mikhaylovna Soboleva Kemerovo State Medical University; Kuzbass State Agricultural Academy Email: meer@yandex.ru
  • Ekaterina Petrovna Kondratenko Kuzbass State Agricultural Academy Email: meer@yandex.ru
  • Andrey Sergeyevich Sukhikh Kemerovo State Medical University Email: Suhih_as@list.ru
Keywords: barley, Hordeum vulgare, fatty acid profile, fatty acids, ultrahigh frequency electromagnetic field, stress, adaptation

Abstract

The fatty acid profile of plants can respond to changes in environmental conditions. Oxidative stress, which develops as a result of water deficiency, is the leading abiotic stress in plant life. The mechanisms of adaptation to this factor are diverse and may include various physiological and biochemical transformations, for example, modification of the fatty acid profile. The aim of the work was to study the response at the level of barley fatty acids to water deficiency after electromagnetic treatment. For the first time, data on the regulation of the pool of fatty acids of spring barley (Hordeum vulgare L.) in conditions of water scarcity were obtained. The plants are grown from seeds treated in an ultra-high frequency electromagnetic field, with a lack of water in comparison with the conditions of normal humidification. The qualitative fatty acid profile of barley leaves does not change either under the influence of drought or under the influence of an electromagnetic field. However, the adaptation modification affects the quantitative composition – for example, under the influence of drought, the content of palmitic acid decreases by 2.03 times relative to the control. Pretreatment of barley seeds with an electromagnetic field and the development of barley in conditions of lack of moisture leads to a decrease in the content of such fatty acids as lauric, palmitoleic, oleic, petroselinic – the difference with the control is from 1.29 to 13.00 times. Under the same growth conditions, the content of pentadecanoic acid in chloroform leaf extract increases by an average of 1.42 times relative to non-irradiated plants with normal humidification conditions. The degree of unsaturation of the fatty acid profile of barley increases significantly under the consistent influence of an ultrahigh frequency electromagnetic field and water deficiency. Thus, electromagnetic treatment is able to partially compensate for the effects of oxidative stress on barley.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Ol'ga Mikhaylovna Soboleva, Kemerovo State Medical University; Kuzbass State Agricultural Academy

кандидат биологических наук, доцент

Ekaterina Petrovna Kondratenko, Kuzbass State Agricultural Academy

доктор сельскохозяйственных наук, профессор

Andrey Sergeyevich Sukhikh, Kemerovo State Medical University

кандидат фармацевтических наук, старший научный сотрудник Центральной научно-исследовательской лаборатории

References

Ogbaga C.C., Amir M., Bano H., Chater C.C., Jellason N.P. Scientific African, 2020, e00405. DOI: 10.1016/j.sciaf.2020.e00405.

Aubert L. Konrádová D., Barris S., Quinet M. Physiologia Plantarum, 2020, vol. 172, pp. 577–586. DOI: 10.1111/ppl.13248.

Verma R., Kumar R., Nath A. International Journal of Bio-resource and Stress Management, 2018, vol. 9, no. 1, pp. 167–172. DOI: 10.23910/IJBSM/2018.9.1.3C0472.

Bayati P., Karimmojeni H., Razmjoo J. Industrial Crops and Products, 2020, vol. 155, 112764. DOI: 10.1016/j.indcrop.2020.112764.

Zhukov A.V., Shumskaya M. Functional Plant Biology, 2020, vol. 47, pp. 695–703. DOI: 10.1071/FP19100.

Duarte B., Matos A.R., Caçador I. Plant Physiology and Biochemistry, 2020, vol. 154, pp. 304–315. DOI: 10.1016/j.plaphy.2020.06.019.

Gigon A. et al. Annals of botany, 2004, vol. 94, no. 3, pp. 345–351. DOI: 10.1093/aob/mch150.

Hou Q., Ufer G., Bartels D. Plant, cell & environment, 2016, vol. 39, no. 5, pp. 1029–1048. DOI: 10.1111/pce.12666.

Mandal M.K., Chandra-Shekara A.C., Jeong R.-D., Yu K., Zhu S., Chanda B., Kachroo P. The Plant Cell., 2012, vol. 24, pp. 1654–1674. DOI: 10.1105/tpc.112.096768.

Wasternack C., Feussner I. Annual review of plant biology, 2018, vol. 69, pp. 363–386. DOI: 10.1146/annurev-arplant-042817-040440.

Zhukov A.V. Fiziologiya rasteniy, 2021, vol. 68, no. 2, pp. 206–224. DOI: 10.31857/S001533032101022X. (in Russ.).

Kovalevskaya N.P. Khimiya rastitel'nogo syr'ya, 2021, no. 4, pp. 259–265. DOI: 10.14258/jcprm.2021048760. (in Russ.).

Pushkina N.V. Khimiya rastitel'nogo syr'ya, 2020, no. 2, pp. 93–99. DOI: 10.14258/jcprm.2020026268. (in Russ.).

Korsukova A.V. i dr. Agrokhimiya, 2018, no. 11, pp. 60–66. DOI: 10.1134/S0002188118110078. (in Russ.).

Walley J.W. et al. Current opinion in plant biology, 2013, vol. 16, no. 4, pp. 520–526. DOI: 10.1016/j.pbi.2013.06.011.

Yaeno T., Matsuda O., Iba K. The Plant Journal, 2004, vol. 40, no. 6, pp. 931–941. DOI: 10.1111/j.1365-313X.2004.02260.x.

Novikov N.N. Izvestiya TSKhA, 2010, no. 1, pp. 59–72. (in Russ.).

Lim G.H. et al. Annual review of Phytopathology, 2017, vol. 55, pp. 505–536. DOI: 10.1146/annurev-phyto-080516-035406.

Owen D.M. et al. Nature communications, 2012, vol. 3, no. 1, pp. 1–8. DOI: 10.1038/ncomms2273.

Upchurch R.G. Biotechnology letters, 2008, vol. 30, no. 6, pp. 967–977. DOI: 10.1007/s10529-008-9639-z.

Published
2022-09-26
How to Cite
1. Soboleva O. M., Kondratenko E. P., Sukhikh A. S. MODIFICATION OF THE FATTY ACID PROFILE AS ADAPTATION OF BARLEY TO OXIDATIVE STRESS // chemistry of plant raw material, 2022. № 3. P. 229-236. URL: http://journal.asu.ru/cw/article/view/10596.
Section
Low-molecular weight compounds