COMPARISON OF THE PHENOLIC COMPOUNDS CONTENT AND COMPOSITION IN SYNECHOCYSTIS SP. AND DESERTIFILUM THARENSE

UDK 581.1

  • Natalya Viktorovna Zagoskina K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences Email: nzagoskina@mail.ru
  • Maria Andreevna Sinetova K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences Email: maria.sinetova@mail.ru
  • Petr Vladimirovich Lapshin K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences Email: p.lapsin@mail.ru
  • Dmitry Anatolyevich Los K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences Email: losda@ippras.ru
Keywords: Synechocystis sp. PCC 6803 GT-L, Desertifilum tharense, phenolic compounds, content, composition

Abstract

The content and composition of phenolic compounds in Synechocystis sp. PCC 6803 GT-L and Desertifilum tharense were studied for the first time. A spectrophotometric method was used to determine the phenolic compounds content, thin-layer chromatography and UV spectrometry to study their composition. A higher accumulation of these secondary metabolites was found in Synechocystis sp., which was almost twice as high as that in Desertifilum tharense. In both cases, the higher content of phenolic compounds was observed in the linear phase of cyanobacteria growth (3 days). Synechocystis sp. and Desertifilum tharense characterized by the formation of phenolics (4 and 7 compounds, respectively), which contain p-oxybenzoic or p-coumaric acids – the initial stages’metabolites of the phenolic compounds biogenesis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Natalya Viktorovna Zagoskina, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Doctor of Biological Sciences, Professor, Leading Researcher, Head of the Plant Phenolic Metabolism Group

Maria Andreevna Sinetova , K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Candidate of Biological Sciences, Head of the Laboratory of Ecophysiology of Microalgae (with the IPPAS Collection), Leading Researcher

Petr Vladimirovich Lapshin , K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Candidate of Biological Sciences, senior researcher, head of the group of succulent plants

Dmitry Anatolyevich Los , K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Doctor of Biological Sciences, Corresponding Member of the Russian Academy of Sciences, Professor, Director, Head of the Department of Molecular Biosystems

References

Lukner M. Vtorichnyy metabolizm u mikroorganizmov, rasteniy i zhivotnykh. [Secondary metabolism in microorgan-isms, plants and animals]. Moscow, 1979, 548 p. (in Russ.).

Landia M., Zivcak M., Sytar O., Brestic M., Allakhverdiev S.I. BBA – Bioenergetics, 2020, vol. 1861, 148131. DOI: 10.1016/j.bbabio.2019.148131.

Wen W., Alseekh S., Fernie A.R. Current opinion in plant biology, 2020, vol. 55, pp. 100–108. DOI: 10.1016/j.pbi.2020.04.004.

Zaprometov M.N. Fenol'nyye soyedineniya: Rasprostraneniye, metabolizm i funktsii v rasteniyakh. [Phenolic com-pounds: Distribution, metabolism and functions in plants]. Moscow, 1993, 272 p. (in Russ.).

Cheynier V., Comte G., Davis K.M., Lattanzio V., Martens S. Plant Physiology and Biochemistry, 2013, vol. 72, pp. 1–20.

Singh S., Kaur I., Kariyat R. Int. J. Mol. Sci., 2021, vol. 22(3), 1442. DOI: 10.3390/ijms22031442.

Shen N., Wang T., Gan Q., Liu S., Wang L., Jin B. Food Chemistry, 2022, vol. 383, 132531. DOI: 10.1016/j.foodchem.2022.132531.

Prabhu S., Molath A., Choksi H., Kumar S., Mehra R. Int. J. Physiol. Nutr. Phys. Educ., 2021, vol. 6(1), pp. 293–301.

Jerez-Martel I., García-Poza S., Rodríguez-Martel G., Rico M., Afonso-Olivares C., Gómez-Pinchetti J.L. J. Food Quality, 2017, vol. 4, pp. 1–8. DOI: 10.1155/2017/2924508.

Del Mondo A., Smerilli A., Ambrosino L., Albini A., Noonan D.M., Sansone C., Brunet C. Critical Reviews in Bio-technology, 2021, vol. 41, pp. 155–171. DOI: 10.1080/07388551.2021.1874284.

Krylova J., Kurashov E. Algae Biotechnology: Integrated Algal Engineering for Bioenergy, Bioremediation, and Bio-medical Applications. Elsevier, 2022, pp. 347–376. DOI: 10.1016/B978-0-323-90476-6.00021-2.

Shestakov S.V., Karbysheva Ye.A. Uspekhi sovremennoy biologii, 2017, vol. 137, no. 1, pp. 4–19. (in Russ.).

Tsoglin L.N., Pronina N.A. Biotekhnologiya mikrovodorosley. [Biotechnology of microalgae]. Moscow, 2012, 184 p. (in Russ.).

Budagayeva V.G., Radnaguruyeva A.A., Lavrent'yeva Ye.V., Barkhutova D.D., Olennikov D.N. Khimiya ras-titel'nogo syr'ya, 2018, no. 1, pp. 45–51. DOI: 10.14258/jcprm.2018012168. (in Russ.).

Zahra Z., Choo Da H., Lee H., Parveen A. Environments, 2020, vol. 7, 13. DOI: 10.3390/environments7020013.

Zinchenko V.V., Glazer V.M., Kryazhov S.V., Luchkin P.V., Babykin M.M., Belavina N.V., Los' D.A. Ekologicheskaya genetika, 2008, vol. 6 (3), pp. 33–41. (in Russ.).

Los' D.A. Sensornyye sistemy tsianobakteriy. [Sensory systems of cyanobacteria]. Moscow, 2010, 217 p. (in Russ.).

Sinetova M.A., Los D.A. Molecular BioSystems, 2016, vol. 12, pp. 3254–3258.

Lai Y.S., Zhou Y., Eustance E., Straka L., Wang Z., Rittmann B.E. Algal Res., 2018, vol. 3, pp. 250–255.

Gao E-B., Kyere-Yeboah K., Wu J., Qiu H. Algal Research, 2021, vol. 54, 102180. DOI: 10.1016/j.algal.2020.102180.

Gonzalez-Resendiz L., Johansen J.R., Leon-Tejera H., Sanchez L., Segal-Kischinevzky C., Escobar-Sanchez V., Mo-rales M. J. Phycol., 2019, vol. 55, pp. 898–911.

Sinetova M.A., Bolakhan K., Sidorov R.A., Mironov K.S., Skrypnik A.N., Kupriyanova E.V., Zayadan B.K., Shumskaya M.A., Los D.A. FEMS Microbiol. Lett., 2017, vol. 364(4), fnx027. DOI: 10.1093/femsle/fnx027.

Gabrielyan D.A., Sinetova M.A., Gabrielyan A.K., Bobrovnikova L.A., Bedbenov V.S., Starikov A.Y., Zorina A.A., Gabel B.V., Los D.A. Rus. J. Plant Physiol., 2023, vol. 70(2), pp. 202–213. DOI: 10.1134/S1021443722602737.

Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G. Bacteriol. Rev. 1971, vol. 35, pp. 171–205.

Olenichenko N.A., Zagoskina N.V. Applied Biochemistry and Microbiology, 2005, vol. 41, pp. 600–603. DOI: 10.1134/S0003683808050141.

Nikolayeva T.N., Lapshin P.V., Zagoskina N.V. Khimiya rastitel'nogo syr'ya, 2021, no. 2, pp. 291–299. DOI: 10.14258/jcprm.2021028250. (in Russ.).

Zaprometov M.N. Osnovy biokhimii fenol'nykh soyedineniy. [Fundamentals of biochemistry of phenolic compounds]. Moscow, 1974, 215 p. (in Russ.).

Zagoskina N.V., Nikolaeva T.N., Lapshin P.V., Zavarzin A.A., Zavarzina A.G. Microbiology, 2013, vol. 82, pp. 445–452. DOI: 10.1134/S0026261713030132.

Harborne J.B. Phytochemical methods. London, 1984, 288 p.

Vogt T. Molecular plant, 2010, vol. 3(1), pp. 2–20. DOI: 10.1093/mp/ssp106.

Published
2024-02-20
How to Cite
1. Zagoskina N. V., Sinetova M. A., Lapshin P. V., Los D. A. COMPARISON OF THE PHENOLIC COMPOUNDS CONTENT AND COMPOSITION IN SYNECHOCYSTIS SP. AND DESERTIFILUM THARENSE // chemistry of plant raw material, 2024. № 1. P. 177-185. URL: http://journal.asu.ru/cw/article/view/12643.
Section
Low-molecular weight compounds