ANTIOXIDANT ACTIVITY OF TRITERPENE GLYCOSIDE (CORTUSOSIDE A) FROM CORTUSA MATTHIOLI L. PLANT

UDC 547.918:541.69

  • Igor' Vasil'yevich Beshley Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences Email: beshley@ib.komisc.ru
  • Kseniya Viktorovna Bezmaternykh Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences Email: hydrargyrum@iegm.ru
  • Tat'yana Ivanovna Shirshova Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences Email: shirshova@ib.komisc.ru
  • Vladimir Vital'yevich Volodin Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences Email: volodin@ib.komisc.ru
  • Galina Vasil'yevna Smirnova Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences Email: smirnova@iegm.ru
Keywords: triterpene glycosides, antioxidant activity, Cortusa matthioli, cortusoside A, radical binding activity, iron chelating ability

Abstract

The antioxidant activity of triterpene glycoside, first isolated from the aboveground part of the plant Cortusa matthioli L. and identified as β-D-xylopyranosyl-(1→2)-β-D-glucopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→2)]-α-L-arabinopyranoside-(1→3)-13β,28-epoxyolean-30-al-3β,16α-diol (cortusoside A), is studied. Tests for the ability of cortusoside A to bind 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals did not reveal any activity of this compound. However, in experiments to study the ability to chelate Fe2+ ions, its sufficiently high iron chelating activity was found, which was only 2.24 times lower compared to the powerful Fe2+ chelator dipyridyl. The EC50 values for cortusoside A and dipyridyl were 0.417±0.057 and 0.186±0.018 mM, respectively. Literature analysis has shown that the structural analogue of cortusoside A, saxifragifolin B, has a much weaker iron chelating ability (13,4 times) compared to the standard Fe2+ EDTA-Na2 ion chelator, as well as a weak ability to bind free radicals of DPPH compared to the reference antioxidants – catechin and ascorbic acid (50 and 32 times, respectively). Despite the structural identity of the molecules cortusoside A and saxifragifolin B, low radiculopathy activity cortusosoide A may be due to differences in the structure of these substances (optical or geometric isomerism), as well as different methods were used in its definition.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Igor' Vasil'yevich Beshley, Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences

кандидат биологических наук, научный сотрудник лаборатории биохимии и биотехнологии

Kseniya Viktorovna Bezmaternykh, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences

кандидат биологических наук, младший научный сотрудник лаборатории физиологии и генетики микроорганизмов

Tat'yana Ivanovna Shirshova, Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences

кандидат химических наук, ведущий научный сотрудник лаборатории биохимии и биотехнологии

Vladimir Vital'yevich Volodin, Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences

доктор биологических наук, профессор, заведующий лабораторией биохимии и биотехнологии

Galina Vasil'yevna Smirnova, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences

доктор биологических наук, ведущий научный сотрудник лаборатории физиологии и генетики микроорганизмов

References

Francis G., Keren Z., Makkar H.P.S., Becker K. British Journal of Nutrition, 2002, vol. 88, pp. 587–605.

Lupanova I.A., Mineyeva M.F., Kolkhir V.K., Martynov A.M. Sibirskiy meditsinskiy zhurnal, 2011, no. 6, pp. 244–246. (in Russ.).

Vasil'yeva I.S., Paseshnichenko V.A. Prikladnaya biokhimiya i mikrobiologiya, 1999, vol. 35, no. 5, pp. 521–535. (in Russ.).

Rastitel'nyye resursy SSSR: Tsvetkovyye rasteniya, ikh khimicheskiy sostav, ispol'zovaniye; Semeystva Paeoniaceae – Thymelaeaceae. [Plant resources of the USSR: Flowering plants, their chemical composition, use; Family Paeoniaceae – Thymelaeaceae]. Leningrad, 1986, vol. 2, 336 p. (in Russ.).

Asilbekova D.T., Nuriddinov Kh.R. Khimiya rastitel'nogo syr'ya, 2011, no. 4, pp. 219–222. (in Russ.).

Beshley I.V., Ufimtsev K.G., Volodin V.V., Shirshova T.I. Rastitel'nyye resursy, 2018, vol. 54, no. 4, pp. 532–541. DOI: 10.1134/S0033994618040040 (in Russ.).

Beshley I.V., Shirshova T.I., Volodin V.V., Ufimtsev K.G., Kolotyrkina N.G., Alekseyev I.N., Patov S.A. Khimiya rastitel'nogo syr'ya, 2019, no. 4, pp. 243–248. DOI: 10.14258/jcprm.2019045133 (in Russ.).

Waltho J.P., Williams D.H., Mahato S.B., Pal B.C., Barna J.C.J. J. Chem. Soc. Perkin Trans., 1986, vol. 8, no. 1, pp. 1527–1531.

Lavaud C., Massiot G., Barrera G.B., Moretti Ch., Le Men-Oliver L. Phytochemistry, 1994, vol. 37, no. 6, pp. 1671–1677.

Jansakul C., Baumann H., Kenne L., Samuelsson G. Planta Med., 1987, vol. 53, pp. 405–409.

Reznicek G., Jorenitsch J., Robien W., Kubelka W. Phytochemistry, 1989, vol. 28, no. 3, pp. 825–828.

Park J.H., Kwak J.H., Khoo J.H., Park S.-H., Kim D.U., Ha D.M., Choi S.U., Kang S.C., Zee O.P. Arch Pharm Res., 2010, vol. 33, no. 8, pp. 1175–1180.

Zhang D.M., Wang Y., Tang M.K., Chan Y.W., Lam H.M., Ye W.C., Fung K.P. Biochem. Biophys. Res. Commun., 2007, vol. 362, pp. 759–765.

Shyur L.-F., Tsung J.-H., Chen J.-H., Chiu C.-Y., Lo J.-P. Inter. J. Appl. Sci. Eng. Technol., 2005, vol. 3, pp. 195–202.

Kim H.-J., Chen F, Wang X, Chung H.Y., Jin Z. J. Agric. Food Chem., 2005, vol. 53, pp. 7691–7695.

Furtado J.C.N.A., Pirson L., Edelberg H., Miranda L.M., Loira-Pastoriza C., Preat V., Larondelle Y., André C.M. Mol-ecules, 2017, vol 22, no. 3, p. 400. DOI: 10.3390/molecules22030400.

Badole S.L., Zanwar A.A., Khopade A.N., Bodhankar S.L. Asian Pac. J. Trop. Med., 2011, vol 4, no. 11, pp. 910–916. DOI: 10.1016/S1995-7645(11)60217-4.

Santiago L.A., Dayrit K.C., Correa P.C.B., Mayor A.B.R. Journal of Natural Products, 2014, vol. 7, pp. 29–36.

El Hosry L., Di Giorgio C., Birer C., Habib J., Tueni M., Bun S.-S., Herbette G., De Meo M., Ollivier E., Elias R. Pharm. Biol., 2014, vol. 52, no. 9, pp. 1134–1140.

Apak R., Gorinstein S., Böhm V., Schaich K.M., Özyürek M., Güçlü K. Pure Appl. Chem., 2013, vol. 85, no. 5, pp. 957–998. DOI: 10.1351/PAC-REP-12-07-15.

Published
2020-10-22
How to Cite
1. Beshley I. V., Bezmaternykh K. V., Shirshova T. I., Volodin V. V., Smirnova G. V. ANTIOXIDANT ACTIVITY OF TRITERPENE GLYCOSIDE (CORTUSOSIDE A) FROM CORTUSA MATTHIOLI L. PLANT // chemistry of plant raw material, 2020. № 3. P. 91-96. URL: http://journal.asu.ru/cw/article/view/7416.
Section
Low-molecular weight compounds