APPLICATION OF PIEZOSENSORS BASED ON THE MOLECULARLY IMPRINTED POLYIMIDE FOR DETERMI-NATION OF CAFFEINE IN TEA

UDC 543.054:547.466

Keywords: caffeine, polyamic acid, polyimide, molecularly imprinted polymers, piezosensors

Abstract

In this article the molecularly imprinted polymers (MIPs) have been synthesized on the surface of piezosensors. The starting polymer for MIPs production was polyamic acid, which is a copolymer of 1,2,4,5-benzenetetracarboxylic acid and 4,4′-diaminodiphenyl ether. The caffeine served as the template. The quantum-chemical simulation was performed by the Gaussian 09 software using the DFT method at the B3LYP/6-31G(d,p) level with the basis set superposition error (BSSE) at the preliminary stage of the synthesis of the MIP for caffeine. The prepolymerization complexes were calculated to establish intermolecular interactions and obtain the optimum molar ratio between the template and polyamiс acid. It is shown that the constitutional repeating units of polyamic acid interact with the caffeine by forming H-bonds via carboxyl groups. The interaction energy first increases and then decreases with increasing the molar ratio of imprinting. Based on the quantum-chemical calculations, the optimal ratio of the reagents in prepolymerization mixture was set to 1 : 3 with the highest interaction energy (96.7 kJ/mol). Applying thermal imidization of solution of polyamic acid in the presence of a template, the molecularly imprinted polyimide has been synthesized by the non-covalent imprinting method. The ability of the obtained piezosensors to recognize the tempalte in model mixtures was experimentally evaluated. It was found that the range of detectable concentrations of caffeine is 3.1.10-6-10-1 mol/dm3 and the detection limit is 10-6 mol/dm3. Correctness of the caffeine determination in model solutions was verified in the spike/recovery tests. Piezosensors based on MIP were approved for the determination of the caffeine in tea varieties. It is shown that the concentration of caffeine in the aqueous solution increases with increasing brewing time. The relative standard deviation is less than 8%.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Nhat Linh Cao, Coastal Branch, Vietnam-Russia Tropical Centre

кандидат химических наук, ассистент-исследователь отдела тропикостойкости

Ol'ga Vasil'yevna Duvanova, Voronezh State University

кандидат химических наук, ведущий инженер кафедры аналитической химии

Aleksandr Nikolayevich Zyablov, Voronezh State University

доктор химических наук, профессор кафедры аналитической химии

Anh Tien Nguyen, Ho Chi Minh City University of Education

кандидат химических наук, заведующий кафедрой неорганической химии

References

Mehamod F.S., Ku Bulat K., Yusof N.F., Othman N.A. International Journal of Technology, 2015, vol. 6, no. 4, pp. 546–554. DOI: 10.14716/ijtech.v6i4.1701.

Farrington K., Magner E., Regan F. Analytica chimica acta, 2006, vol. 566, no. 1, pp. 60–68. DOI: 10.1016/j.aca.2006.02.057.

Davies M.P., De Biasi V., Perrett D. Analytica Chimica Acta, 2004, vol. 504, no. 1, pp. 7–14. DOI: 10.1016/S0003-2670(03)00812-2.

Nwuha V. Journal of Food Engineering, 2000, vol. 44, no. 4, pp. 233–238. DOI: 10.1016/S0260-8774(00)00031-5.

Kim W.J., Kim J.D., Kim J., Oh S.G., Lee Y.W. Journal of Food Engineering, 2008, vol. 89, no. 3, pp. 303–309. DOI: 10.1016/j.jfoodeng.2008.05.018.

Lou Z., Er C., Li J., Wang H., Zhu S., Sun J. Analytica Chimica Acta, 2012, vol. 716, pp. 49–53. DOI: 10.1016/j.aca.2011.07.038.

Cao Nhat Linh, Akimova M.G., Zyablov A.N. Sorbtsionnye i khromatograficheskie protsessy, 2019, vol. 19, no. 1, pp. 30–36. DOI: 10.17308/sorpchrom.2019.19/645. (in Russ.).

Duvanova O.V., Krivonosova I.A., Zyablov A.N., Falaleev A.V., Selemenev V.F., Sokolova S.A. Inorganic Materi-als, 2018, vol. 54, no. 14, pp. 1387–1391. DOI: 10.1134/S002016851814008X.

Korolev A.I., Zavarykina S.A., Cao Nhat Linh, Nikitina S.Iu., Zyablov A.N. Sorbtsionnye i khromatograficheskie protsessy, 2020, vol. 20, no. 2, pp. 271–276. DOI: 10.17308/sorpchrom.2020.20/2782. (in Russ.).

Dmitriyenko S.G., Irkha V.V., Kuznetsova A.Yu., Zolotov Yu.A. Zhurnal analiticheskoy khimii, 2004, vol. 59, no. 9, pp. 902–912. (in Russ.).

Zyablov A.N., Kalach A.V., Zhibrova Yu.A., Selemenev V.F., D'yakonova O.V. Zhurnal analiticheskoy khimii, 2010, vol. 65, no. 1, pp. 93–95. (in Russ.).

Dmitriyenko Ye.V., Pyshnaya I.A., Mart'yanov O.N., Pyshnyy D.V. Uspekhi khimii, 2016, vol. 85, no. 5, pp. 513–536. (in Russ.).

Cao Nhat Linh, Duvanova О.V., Zyablov A.N. Analitika i kontrol', 2019, vol. 23, no. 1, pp. 120–126. DOI: 10.15826/analitika.2019.23.1.006. (in Russ.).

Marć M., Kupka T., Wieczorek P.P., Namieśnik J. TrAC Trends in Analytical Chemistry, 2018, vol. 98, pp. 64–78. DOI: 10.1016/j.trac.2017.10.020.

Khan M.S., Wate P.S., Krupadam R.J. Journal of molecular modeling, 2012, vol. 18, no. 5, pp. 1969–1981. DOI: 10.1007/s00894-011-1218-x.

Frisch M.J., Trucks G.W., Schlegel H.B. et al. GAUSSIAN 09. Gaussian Inc.: Wallingford CT, 2009.

Dai Z.Q., Liu J.B., Tang S.S., Wang Y., Li B., Jin R.F. Structural Chemistry, 2016, vol. 27, no. 4, pp. 1135–1142. DOI: 10.1007/s11224-015-0735-0.

Zhao W., Liu J., Tang S., Jin R. Journal of Molecular Modeling, 2020, vol. 26, no. 4, pp. 1–8. DOI: 10.1007/s00894-020-04362-z.

Cao Nhat Linh, Duvanova O.V., Vu Hoang Yen, Zyablov A.N., Nesterenko P.N. Journal of Molecular Modeling, 2020, vol. 26, no. 8, pp. 1–7. DOI: 10.1007/s00894-020-04462-w.

Dmitrienko E.V., Bulushev R.D., Haupt K., Kosolobov S.S., Latyshev A.V., Pyshnaya I.A., Pyshnyi D.V. Journal of Molecular Recognition, 2013, vol. 26, no. 8, pp. 368–375. DOI: 10.1002/jmr.2281.

Cao Nhat Linh, Duvanova О.V., Nikitina S.Iu., Zyablov A.N. Zavodskaya laboratoriya. Diagnostika materialov, 2019, vol. 85, no. 4, pp. 11–16. DOI: 10.26896/1028-6861-2019-85-4-11-16. (in Russ.).

Cao Nhat Linh, Zyablov A.N., Duvanova О.V., Selemenev V.F. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol, 2020, vol. 63, no. 2, pp. 71–76. DOI: 10.6060/ivkkt.20206302.6071. (in Russ.).

Zyablov A.N., Khalzova S.A., Selemenev V.F. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol, 2017, vol. 60, no. 7, pp. 42–47. DOI: 10.6060/tcct.2017607.5595. (in Russ.).

Published
2021-06-10
How to Cite
1. Cao N. L., Duvanova O. V., Zyablov A. N., Nguyen A. T. APPLICATION OF PIEZOSENSORS BASED ON THE MOLECULARLY IMPRINTED POLYIMIDE FOR DETERMI-NATION OF CAFFEINE IN TEA // chemistry of plant raw material, 2021. № 2. P. 173-180. URL: http://journal.asu.ru/cw/article/view/8239.
Section
Low-molecular weight compounds