SYNTHESIS, STRUCTURE AND PROPERTIES OF ORGANIC GELS BASED ON LARCH BARK TANNINS AND HY-DROLYSIS LIGNIN

UDC 547.992.3

  • Nadezhda Mikhailovna Mikova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center KSC SB RAS https://orcid.org/0000-0003-3360-9093 Email: nm@icct.ru
  • Elena Valentinovna Mazurova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center KSC SB RAS Email: len.mazurova@yandex.ru
  • Ivan Petrovich Ivanov Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center KSC SB RAS https://orcid.org/0000-0001-6241-3474 Email: ivanov@icct.ru
  • Boris Nikolayevich Kuznetsov Институт химии и химической технологии СО РАН, ФИЦ Красноярский научный центр СО РАН Email: bnk@icct.ru
Keywords: organic gels, preparation, larch bark tannins, hydrolysis lignin, structure, adsorption properties

Abstract

For the first time, tannin-lignin-formaldehyde and tannin-lignin-furfuryl organic gels were obtained on the basis of larch bark tannins and hydrolysis lignin by sol-gel condensation with formaldehyde and furfuryl alcohol. Their physico-chemical properties were studied by varying the content of lignin (from 5 to 30 wt%) and a fixed mass ratio of polyphenolic substances to the crosslinking reagent (1 : 1.5). With an increase in the lignin content the density of tannin-lignin formaldehyde gels decreases from 0.83 to 0.53 g/ cm3, and that of tannin-lignin-furfuryl gels is from 0.32 to 0.14 g / cm3. According to the FTIR data, the structures of tannin-lignin-formaldehyde and tannin-lignin-furfuryl gels are formed by aromatic fragments cross-linked with methylene and methylene-ether bridges. Scanning electron microscopy shows that the addition of appropriate amounts of lignin to tannins (up to 10 wt% when using formaldehyde and up to 20 wt% when using furfuryl alcohol) promotes the formation of gels with a more developed porous structure. In the case of tannin-lignin-formaldehyde gel, the specific surface area and sorption of methylene blue are 12 m2 / g and 43 mg / g and for tannin-lignin-furfuryl gel – 72 m2 / g and 114.5 mg/g, respectively. It was found that an increase in the lignin content in the gel composition over 20 wt.% is accompanied by the phase localization of lignin (precipitation), which reduces the strength of the resulting gel and reduces its specific surface area.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Nadezhda Mikhailovna Mikova, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center KSC SB RAS

кандидат химических наук, старший научный сотрудник

Elena Valentinovna Mazurova , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center KSC SB RAS

кандидат технических наук, старший научный сотрудник

Ivan Petrovich Ivanov, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center KSC SB RAS

старший научный сотрудник, кандидат технических наук

Boris Nikolayevich Kuznetsov, Институт химии и химической технологии СО РАН, ФИЦ Красноярский научный центр СО РАН

доктор химических наук, профессор, руководитель научного направления ФИЦ Красноярский научный центр СО РАН, заведующий лабораторией

References

Aaltonen O., Jauhiainen O. Carbohydrate Polymers, 2009, vol. 75, pp. 125–129. DOI: 10.1016/j.carbpol.2008.07.008.

Tao Y., Endo M., Kaneko K. Recent Patents on Chemical Engineering, 2008, vol. 1, pp. 192–200. DOI: 10.2174/2211334710801030192.

Rey-Raap N., Calvo E.G., Menendez J.A., Arenillas A. Microporous and Mesoporous Materials, 2017, vol. 244, pp. 50–54. DOI: 10.1016/j.micromeso.2017.02.044.

Zhao S., Malfait W.J., Guerrero-Alburquerque N., Koebel M.M., Nystrçm G. Angew. Chem. Int. Ed., 2018, vol. 57, pp. 7580–7608. DOI: 10.1002/anie.201709014.

Celzard A., Fierro V., Amarat-Labat G., Szczurek A., Braghiroli F., Parmentier J., Pizzi A., Grishechko L.I., Kuz-netsov B.N. Boletín del Grupo Español del Carbón, 2012, vol. 26, pp. 2–7.

Rey-Raap N., Szczurek A. Fierro V., Celzard A., Menéndez J.A., Arenillas A. Industrial Crops and Products, 2016, vol. 82, pp. 100–106. DOI: 10.1016/j.indcrop.2015.12.001.

Grishechko L.I., Amaral-labat G., Szczurek A., Fierro V., Kuznetsov B.N., Pizzi A., Celzard A. Industrial Crops and Products, 2013, vol. 41, pp. 347-355. DOI: 10.1016/j.indcrop.2012.04.052.

Elkhatat A.M., Al-Muhtaseb S.A. Advanced Materials, 2011, vol. 23, pp. 2887–2903. DOI: 10.1002/adma.201100283.

Arenillas A., Menéndez J.A., Reichenauer G., Celzard A., Fierro V., Josй F., Hodar M., Bailόn-Garcia E., Job N. Organ-ic and Carbon Gels. From Laboratory Synthesis to Applications, 2019. 195 p. DOI: 10.1007/978-3-030-13897-4.

Mikova N.M., Levdanskiy V.А., Skwortsova G.P., Zhizhaev А.М., Lutoshkin M.A., Chesnokov N.V., Kuznetsov B.N. Biomass Conversion and Biorefinery, 2019. DOI: 10.1007/s13399-019-00561-8.

Amaral-Labat G., Grishechko L.I., Fierro V., Kuznetsov B.N., Pizzi A., Celzard A. Biomass and bioenergy, 2013, vol. 56, pp. 437–445. DOI: 10.1016/j.biombioe.2013.06.001.

Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G. Fuel, 2010, vol. 89, no. 5, pp. 913–933. DOI: 10.1016/j.fuel.2009.10.022.

Pizzi A. Tannins: Major Sources, Properties and Applications. Monomers, Polymers and Composites from renewable re-sources // Eds M. N. Belgacem, A. Gandini, Elsevier, 2008, pp. 179–199.

Gordiyenko I.I., Fedorova T.Ye., Ivanova S.Z., Babkin V.A. Khimiya rastitel'nogo syr'ya, 2008, no. 2, pp. 35–38. (in Russ.).

Sarkanen K.V. Ligniny (struktura, svoystva i reaktsii). [Lignins (structure, properties and reactions)]. Ed. K.V. Sarkanen, K.H. Ludwig. Moscow, 1975, 629 p. (in Russ.).

Aegerter M.A., Leventis N., Koebel M.M. Aerogels Handbook. Springer Science, 2011. 916 p. DOI: 10.1007/978-1-4419-7589-8.

Wu D., Fu R. J. Porous Mater, 2005, vol. 12, pp. 311–316.

Fathy N.A., Rizk M.S., Awad R.M.S. J. Anal Appl Pyrolysis, 2016, vol. 119, pp. 60–68. DOI: 10.1016/j.jaap.2016.03.017.

Markelov D.A., Nitsak O.V., Gerashchenko I.I. Khimiko-farmatsevticheskiy zhurnal, 2008, vol. 42(7), pp. 30–33. (in Russ.).

Szczurek A., Fierro V., Thébault M., Pizzi A., Celzard A. European Polymer Journal, 2016, vol. 78, pp. 195–212. DOI: 10.1016/J.EURPOLYMJ.2016.03.037.

Kraiwattanawong K., Mukai S.R., Tamon H., Lothongkum A.W. Microporous and Mesoporous Materials, 2007, vol. 98, pp. 258–266. DOI: 10.1016/j.micromeso.2006.09.007.

Akerholm M., Salmen L. Polymer, 2001, vol. 42, pp. 963–969.

Szczurek A., Amaral-Labat G., Fierro V., Pizzi A., Masson E., Celzard A. Carbon, 2011, vol. 49, pp. 2773–2784. DOI: 10.1016/j.carbon.2011.03.007.

Fathya N.A., Rizk M.S., Awad Reham M.S. J. Anal Appl Pyrolysis, 2016, vol. 119, pp. 60–68. DOI: 10.1016/j.jaap.2016.03.017.

Jirglová H., Pérez-Cadenas A.F., Maldonado-Hódar F.J. Langmuir, 2009, vol. 25(4), pp. 2461–2466. DOI: 10.1021/la803200b.

Li W-C., Lu A-H., Guo S-C. Carbon, 2001, vol. 39, pp. 1989–1994. DOI: 10.1016/S0008-6223(01)00029-X.

Girgis B.S., El-Sherif I.Y., Attia A.A., Fathy N.A. J. Non Cryst. Solids., 2012, vol. 358(4), pp. 741–747. DOI: 10.1016/j.jnoncrysol.2011.12.004.

Gallegos-Suarez E., Perez-Cadenas A.F., Maldonado-Hodar F.J., Carrasco-Marin F. Chemical Engineering Journal, 2012, vol. 181–182, pp. 851–855. DOI: 10.1016/j.cej.2011.12.002.

Choura M., Belgacem N.M., Gandini A. Macromolecules, 1996, vol. 29, pp. 3839–3850. DOI: 10.1021/ma951522f.

Tannet R., Schwan M., Ratke L. J. of Supercritical Fluids, 2015, vol. 106, pp. 57–61. DOI: 10.1016/j.supflu.2015.06.021.

Al-Muhtased S.B., Ritter J.A. Advanced Materials, 2003, vol. 15, pp. 101–114. DOI: 10.1002/adma.200390020.

Amaral-Labat G., Szczurek A., Fierro V., Pizzi A., Celzard A. Science and Technology of Advanced Materials, 2013, vol. 14, issue 1. Article 015001. DOI: 10.1088/1468-6996/14/1/015001.

Feng Chen, Min Lijuan Wang, Jian Li. BioResources, 2011, vol. 6, issue 2, pp. 1262–1272. DOI: 10.15376/biores.6.2.1262-127.

Wu D., Fu R. Micropore and Mesopore Materials, 2006, vol. 96, pp. 115–120. DOI: 10.1016/j.micromeso.2006.06.022.

Wu D., Fu R., Dresselhaus M.S., Dresselhaus G. Carbon, 2006, vol. 44, pp. 675–681. DOI: 10.1016/j.carbon.2005.09.022.

Grishechko L.I., Amaral-Labat G., Szczurek A., Fierro V., Kuznetsov B.N., Celzard A. Micropor Mesopor Mater., 2013, vol. 168, pp. 19–29. DOI: 10.1016/j.micromeso.2012.09.024.

Wang F., Yao L.F., Shen J. Guan D.Y., Fang Zh. Adv. Mater. Res., 2014, vol. 941–944, pp. 450–453. DOI: 10.4028/www.scientific.net/AMR.941-944.450.

Sing R.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A.,Rouquerol J., Siemieniewska T. Pure Appl. Chem., 1985, vol. 57, pp. 603–619.

Reshetnikov V.I. Khimiko-farmatsevticheskiy zhurnal, 2003, vol. 37, no. 5, pp. 28–32. (in Russ.).

Published
2021-06-10
How to Cite
1. Mikova N. M., Mazurova E. V., Ivanov I. P., Kuznetsov B. N. SYNTHESIS, STRUCTURE AND PROPERTIES OF ORGANIC GELS BASED ON LARCH BARK TANNINS AND HY-DROLYSIS LIGNIN // chemistry of plant raw material, 2021. № 2. P. 109-122. URL: http://journal.asu.ru/cw/article/view/9635.
Section
Biopolymers of plants