SYNTHESIS OF COCRYSTALS OF BETULIN WITH SUBERIC ACID AND STUDY OF THEIR PROPERTIES

UDC 54.05+547.91

  • Anastasiya Vital'yevna Mikhailovskaya Institute of Solid State Chemistry and Mechanochemistry SB RAS Email: mihailovskaya.a@list.ru
  • Svetlana Anatol'yevna Myz Institute of Solid State Chemistry and Mechanochemistry SB RAS Email: apenina79@gmail.com
  • Konstantin Borisovich Gerasimov Institute of Solid State Chemistry and Mechanochemistry SB RAS Email: gerasimov@solid.nsc.ru
  • Svetlana Alekseyevna Kuznetsova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center Krasnoyarsk Scientific Center of SB RAS Email: kuznetssvetl@rambler.ru
  • Tat'yana Petrovna Shakhtshneider Institute of Solid State Chemistry and Mechanochemistry SB RAS Email: shah@solid.nsc.ru
Keywords: mechanochemical synthesis, betulin, suberic acid, cocrystals

Abstract

Lupane triterpenoids, betulin and its derivatives, are attracting great interest due to their wide range of biological and pharmacological activities. However, the poor solubility of betulin and its derivatives in aqueous media significantly reduces their bioavailability. Obtaining cocrystals, that is, multicomponent crystal systems containing active pharmaceutical ingredients and non-toxic partner molecules in their structure, is used in pharmacy to change the physicochemical properties of drugs, including the rate of dissolution and solubility. In this study, cocrystals of betulin with suberic acid were obtained by liquid-assisted grinding method using organic solvents of different polarity: ethanol, acetone, ethyl acetate, chloroform, toluene, dioxane. The formation of cocrystals was confirmed by X-ray diffraction analysis, IR spectroscopy, and thermal analysis. It has been shown that cocrystals of betulin with suberic acid contain water molecules in their structure; anhydrous cocrystals can be obtained by heating a physical mixture of reagents until the acid melts. The results of experiments on the dissolution of cocrystals of betulin with suberic acid in comparison with the data for cocrystals of betulin with adipic acid showed that an increase in the length of the aliphatic acid chain leads to a decrease in the rate of betulin release into solution.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Anastasiya Vital'yevna Mikhailovskaya, Institute of Solid State Chemistry and Mechanochemistry SB RAS

младший научный сотрудник лаборатории синтеза и физико-химического анализа функциональных материалов

Svetlana Anatol'yevna Myz, Institute of Solid State Chemistry and Mechanochemistry SB RAS

кандидат химических наук, научный сотрудник лаборатории синтеза и физико-химического анализа функциональных материалов

Konstantin Borisovich Gerasimov, Institute of Solid State Chemistry and Mechanochemistry SB RAS

кандидат химических наук, старший научный сотрудник лаборатории синтеза и физико-химического анализа функциональных материалов

Svetlana Alekseyevna Kuznetsova, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center Krasnoyarsk Scientific Center of SB RAS

доктор химических наук, доцент, главный научный сотрудник лаборатории химии природного органического сырья

Tat'yana Petrovna Shakhtshneider, Institute of Solid State Chemistry and Mechanochemistry SB RAS

доктор химических наук, старший научный сотрудник, ученый секретарь

References

Amiri S., Dastghaib S., Ahmadi M., Mehrbod P., Khademe F., Behroujb H., Aghanoorif M-R., Machajg F., Ghamsa-ric M., Rosikg J., Hudeckih A., Afkhamic A., Hashemii M., Los M.J., Mokarram P., Madrakianc T., Ghavamia S. Biotechnology Advances, 2020, vol. 38, art. 107409. DOI: 10.1016/j.biotechadv.2019.06.008.

Vorob'yeva O.A., Malygina D.S., Grubova Ye.V., Mel'nikova N.B. Khimiya rastitel'nogo syr'ya, 2019, no. 4, pp. 407–430. (in Russ.).

Shakhtshneider T.P., Kuznetsova S.A., Zamay A.S., Zamay T.N., Spivak E.A., Mikhailenko M.M., Malyar Yu.N., Kuznetsov B.N., Chesnokov N.V., Boldyrev V.V. Natural Product Research, 2016, vol. 30, pp. 1382–1387. DOI: 10.1080/14786419.2015.1060591.

Król S.K., Kiełbus M., Rivero-Müller A., Stepulak A. BioMed Research International, 2015, vol. 2015, pp. 1–11. DOI: 10.1155/2015/584189.

Kuznetsova S.A., Skvortsova G.P., Malyar Yu.N., Skurydina Ye.S., Veselova O.F. Khimiya rastitel'nogo syr'ya, 2013, no. 2, pp. 93–100. DOI: 10.14258/jcprm.1302093. (in Russ.).

Mierina I., Vilskersts R., Turks M. Current Medicinal Chemistry, 2018, vol. 25, pp. 1–29.

Healy A.M., Worku Z.A., Kumar D., Madi A.M. Advanced Drug Delivery Reviews, 2017, vol. 117, pp. 25–46. DOI: 10.1016/j.addr.2017.03.002.

Jones W., Motherwell W.D.S., Trask A.V. MRS Bulletin, 2006, vol. 31, pp. 875–879. DOI: 10.1557/mrs2006.206.

Qiao N., Li M., Schlindwein W., Malek N., Davies A., Trappitt G. International Journal of Pharmaceutics, 2011, vol. 419, pp. 1–11. DOI: 10.1016/j.ijpharm.2011.07.037.

Weng J.W., Wong S.N., Xu X.Y., Xuan B.F., Wang C.G., Chen R.P., Sun C.C., Lakerveld R., Kwok P.C.L, Chow S.F. Crystal Growth and Design, 2019, vol. 19, pp. 2736–2745. DOI: 10.1021/acs.cgd.8b01873.

Rodrigues M., Baptista B., Lopes J.A., Sarraguça M.C. International Journal of Pharmaceutics, 2018, vol. 547, pp. 404–420. DOI: 10.1016/j.ijpharm.2018.06.024.

Hasa D., Jones W. Advanced Drug Delivery Reviews, 2017, vol. 117, pp. 147–161. DOI: 10.1016/j.addr.2017.05.001.

Mikhaylenko M.A., Shakhtshneyder T.P., Brezgunova M.Ye., Drebushchak V.A., Kuznetsova S.A., Boldyrev V.V. Khimiya rastitel'nogo syr'ya, 2010, no. 2, pp. 63–70. (in Russ.).

Myz S.A., Mikhailovskaya A.V., Mikhailenko M.A., Bulina N.V., Kuznetsova S.A., Shakhtshneider T.P. Materials Today: Proceedings, 2019, vol. 12, pp. 82–85. DOI: 10.1016/j.matpr.2019.03.069.

Mikhailovskaya A.V., Myz S.A., Bulina N.V., Gerasimov K.B., Kuznetsova S.A., Shakhtshneider T.P. Materials To-day: Proceedings, 2020, vol. 25, pp. 381–383. DOI: 10.1016/j.matpr.2019.12.096.

Myz' S.A., Mikhaylenko M.A., Mikhaylovskaya A.V., Politov A.A., Kuznetsova S.A., Shakhtshneyder T.P. Zhurnal Sibirskogo Federal'nogo universiteta. Khimiya, 2020, vol. 13, no. 4, pp. 511–524. (in Russ.).

Shevchenko A., Miroshnyk I., Pietilä L-O., Haarala J., Salmia J., Sinervo K., Mirza S., van Veen B., Kolehmainen E., Yliruusi J. Crystal Growth and Design, 2013, vol. 13, pp. 4877–4884. DOI: 10.1021/cg401061t.

Patent 2264411 (RU). 20.11.2005. (in Russ.).

Qiushuo Y., Xiaoxun M., Wenyu G. Fluid Phase Equilibria, 2012, vol. 330, pp. 44–47. DOI: 10.1016/j.fluid.2012.06.012.

Cao D., Zhao G., Yan W. Journal of Chemical and Engineering Data, 2007, vol. 52, pp. 1366–1368. DOI: 10.1021/je700069g.

Myz' S.A., Shakhtshneyder T.P., Tumanov N.A., Boldyreva Ye.V. Izvestiya Akademii nauk. Seriya khimicheskaya, 2012, no. 9, pp. 1782–1793. (in Russ.).

Drebushchak T.N., Mikhaylovskaya A.V., Drebushchak V.A., Mikhaylenko M.A., Myz' S.A., Shakhtshneyder T.P., Kuznetsova S.A. Zhurnal strukturnoy khimii, 2020, no. 8, pp. 1328–1334. (in Russ.).

Published
2021-12-14
How to Cite
1. Mikhailovskaya A. V., Myz S. A., Gerasimov K. B., Kuznetsova S. A., Shakhtshneider T. P. SYNTHESIS OF COCRYSTALS OF BETULIN WITH SUBERIC ACID AND STUDY OF THEIR PROPERTIES // chemistry of plant raw material, 2021. № 4. P. 183-192. URL: http://journal.asu.ru/cw/article/view/9736.
Section
Low-molecular weight compounds