THE EFFECT OF SUNFLOWER HUSK TORREFICATION ON PYROLYSIS CHARACTERISTICS

UDC 62-664.2

  • Svetlana Ivanovna Islamova Institute of Power Engineering and Advanced Technologies, FRC KazSC RAS Email: isvetulia@mail.ru
  • Airat Raisovich Khamatgalimov A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC KazSC RAS Email: ayrat_kh@iopc.ru
Keywords: agricultural waste, sunflower husk, torrefaction, pyrolysis kinetics, model-free method, thermodynamics

Abstract

Torrefaction is an effective process of pretreatment of biomass to improve its physico-chemical properties and use it as a raw material for pyrolysis or gasification. In this study, the effect of sunflower husk torrefaction on pyrolysis characteristics was studied. The analysis of the kinetics of thermal degradation of torrefied biomass is important for evaluating the effectiveness of the torrefaction process and understanding the pyrolysis characteristics of processed raw materials. In this work, the Ozawa-Flynn-Wall (OFW) method investigated the kinetics of pyrolysis of sunflower husk pellets (PS) and torrefied sunflower husk pellets (TPS) at heating rates of 5, 10 and 20 K/min. The results showed that at TPS, the change in the DTG curve to the peak temperature is more uniform, while the maximum decomposition rate decreased by about 30%. There was a decline in the ignition and combustion of sunflower pellets due to torrefaction. The average activation energy for pyrolysis of PS was 250.82 kJ/mol, for pyrolysis of TPS - 294.37 kJ/mol. Diffusion was the main controlling mechanism of the pyrolysis reaction of PS, for TPS – the main reaction mechanism was complex and unpredictable. The average enthalpy change ΔH was 244.28 kJ/mol for PS, and 288.25 kJ/mol for TPS, the Gibbs free energy ΔG remained at the same level, and the entropy ΔS increased by 48%.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Svetlana Ivanovna Islamova , Institute of Power Engineering and Advanced Technologies, FRC KazSC RAS

candidate of technical sciences, senior researcher of the laboratory of energy systems and technologies

Airat Raisovich Khamatgalimov , A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC KazSC RAS

doctor of chemical sciences, leading researcher of the laboratory of physical and chemical analysis

References

Mishra R.K., Lu Q., Mohanty K. Journal of Analytical and Applied Pyrolysis, 2020, vol. 150, 104887. https://doi.org/10.1016/j.jaap.2020.104887.

Chen C., Qu B., Wang W., Wang W., Ji G., Li A. Environmental Technology & Innovation, 2021, vol. 24, 101872. https://doi.org/10.1016/j.eti.2021.101872.

Chen D., Chen F., Cen K., Cao X. Fuel, 2020, vol. 275, 117936. https://doi.org/10.1016/j.fuel.2020.1179364.

Hu Q., Yang H., Xu H., Wu Z., Lim C.J., Bi X.T., Chen H. Energy Conversion and Management, 2018, vol. 161, pp. 205–214. https://doi.org/10.1016/j.enconman.2018.02.003.

Heydari M., Rahman M., Gupta R. International Journal of Chemical Engineering, 2015, 481739. https://doi.org/10.1155/2015/481739.

Nawaz A., Mishra R.K., Sabbarwal S., Kumar P. Bioresource Technology Reports, 2021, vol. 16, 100858. https://doi.org/10.1016/J.BITEB.2021.100858.

Ashraf A., Sattar H., Munir Sh. Fuel, 2019, vol. 235, pp. 504–514. https://doi.org/10.1016/j.fuel.2018.07.120.

Kazaryan L.K., Loskutov S.R., Shapchenkova O.A., Plyashechnik M.A., Permyakova G.V., Shimova Yu.S. Lesnoy vestnik, 2023, vol. 27, no. 6, pp. 84–97. https://doi.org/10.18698/2542-1468-2023-6-84-97. (in Russ.).

Perea-Moreno M-A., Manzano-Agugliaro F., Perea-Moreno A.J. Sustainability, 2018, vol. 10, 3407. https://doi.org/10.3390/su10103407.

Islamova S.I., Dobrynin A.B. Khimiya rastitel'nogo syr'ya, 2022, no. 1, pp. 325–334. https://doi.org/10.14258/jcprm.20220110226. (in Russ.).

El-Sayed S.A., Khairy M. Biofuels, 2015, vol. 6(3), pp. 157–170. https://doi.org/10.1080/17597269.2015.1065590.

Ghetti P., Ricca L., Angelini L. Fuel, 1996, vol. 75, pp. 565–573. https://doi.org/10.1016/0016-2361(95)00296-0.

Sahu S.G., Sarkar P., Chakraborty N., Adak A.K. Fuel Processing Technology, 2010, vol. 91, pp. 369–378. https://doi.org/10.1016/j.fuproc.2009.12.001.

El-Sayed S.A., Ismail M.A., Mostafa M.E. Environmental Progress & Sustainable Energy, 2019, vol. 38, no. 4, 13124. https://doi.org/10.1002/ep.13124.

Jiang G., Wei L. Analysis of pyrolysis kinetic model for processing of thermogravimetric analysis data. IntechOpen Limited, 2018, 174 p. https://doi.org/10.5772/intechopen.79226.

Karaeva J.V., Timofeeva S.S., Islamova S.I., Gerasimov A.V. Journal of Environmental Chemical Engineering, 2022, vol. 10, 107850. https://doi.org/10.1016/j.jece.2022.107850.

Mallick D., Poddar M.K., Mahanta P., Moholkar V.S. Bioresource Technology, 2018, vol. 261, pp. 294–305. https://doi.org/10.1016/j.biortech.2018.04.011.

Pérez-Maqueda L.A., Perejón A., Criado J.M. Thermochimica acta, 2013, vol. 552, pp. 54–59. https://doi.org/10.1016/j.tca.2012.11.003.

Loskutov S.R., Kazaryan L.K., Petrunina E.A., Aaniskina A.A. Chemistry for Sustainable Development, 2023, vol. 31 (1), pp. 48–58. https://doi.org/10.15372/KhUR2023438.

Kumar M., Mishra P.K., Upadhyay S.N. Fuel, 2020, vol. 268. https://doi.org/10.1016/j.fuel.2020.117164.

Setter C., Silva F.T.M., Assis M.R., Ataíde C.H., Trugilho P.F., Oliveira T.J.P. Fuel, 2020, vol. 261, 116420. https://doi.org/10.1016/j.fuel.2019.116420.

Liu L., Pang Y., Lv D., Wang K., Wang Y. Process Safety and Environmental Protection, 2021, vol. 151, pp. 39–50. https://doi.org/10.1016/j.psep.2021.05.011.

Parthasarathy P., Al-Ansari T., Mackey H.R., McKay G. Biomass Conversion and Biorefinery, 2023, vol. 13, pp. 6023–6035. https://doi.org/10.1007/s13399-021-01531-9.

Islam M.A., Auta M., Kabir G., Hameed B.H. Bioresource Technology, 2016, vol. 200, pp. 335–341. https://doi.org/10.1016/j.biortech.2015.09.057.

Jiang L., Yuan X., Xiao Z., Liang J., Li H., Cao L., Wang H., Chen X., Zeng G. Energy Conversion and Management, 2016, vol. 126, pp. 509–515. https://doi.org/10.1016/j.enconman.2016.08.035.

Wen Y., Shi Z., Wang S., Mu W., Jonsson P.G., Yang W. Chemical Engineering Journal, 2021, vol. 415, 129064. https://doi.org/10.1016/j.cej.2021.129064.

Vikraman V.K., Boopathi G., Kumar D.P., Mythili R., Subramanian P. Renewable Energy, 2021, vol. 180, pp. 838–849. https://doi.org/10.1016/j.renene.2021.08.099.

Mishra A., Kumari U., Turlapati V.Y., Siddiqi H., Meikap B.C. Energy Conversion and Management, 2020, vol. 221, 113194. https://doi.org/10.1016/j.enconman.2020.113194.

Singh S., Chakraborty J.P., Mondal M.K. Fuel, 2020, vol. 259, 116263. https://doi.org/10.1016/j.fuel.2019.116263.

Published
2025-03-10
How to Cite
1. Islamova S. I., Khamatgalimov A. R. THE EFFECT OF SUNFLOWER HUSK TORREFICATION ON PYROLYSIS CHARACTERISTICS // Chemistry of plant raw material, 2025. № 1. P. 301-312. URL: https://journal.asu.ru/cw/article/view/15208.
Section
Technology