INDIRECT OXIDATION OF STARCH BY PERIODATE WITH IN SITU REGENERATION OF AN OXIDIZER ON RUTHENIUM OXIDE TITANIUM AND PLATINUM ANODES IN AQUEOUS MEDIA

UDC 541.135:547.0

  • Svetlana Nikolaevna Kapaeva Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS" Email: Sveta0480@inbox.ru
  • Galina Vasilievna Kornienko Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS" Email: kornienko@icct.ru
  • Vasily Leontievich Kornienko Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS" Email: kvl@icct.ru
  • Svetlana Andreevna Novikova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS" Email: snovik.chem@gmail.com
  • Oksana Pavlovna Taran Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS", Siberian Federal University Email: taran.op@icct.krasn.ru
Keywords: electrochemical oxidative modification, potassium iodate, starch dialdehyde, oxidized starch, ultrasonic treatment, ruthenium oxide - titanium anode, platinum anode

Abstract

The process of electrochemical oxidation of potato starch with potassium iodate in a two-chamber electrolytic cell with in situ oxidant regeneration on ruthenium-titanium oxide (ORTA) and platinum (Pt) anodes depending on current density, pH of the electrolyte, substrate concentration, its aggregate state and ultrasonic treatment is studied. The conditions of the oxidized starch production process were determined: current density of 100 mA/cm2 for ORTA and 50.0 – Pt, pH 7, electrolysis time – 90 minutes, ultrasonic treatment time 30 minutes. It has been established that the temperature regime and the treatment of starch with ultrasound have a significant effect on the reaction of periodate oxidation. With ultrasonic treatment and a reaction temperature of 40 °C, the yield of aldehyde groups increases to 65 mol.%. The reaction products were analyzed by methods: IR spectroscopy, elemental analysis, scanning electron microscopy, X-ray phase analysis. After electrochemical oxidation, a decrease in the intensity of the starch diffraction lines is observed due to the destruction of its crystalline component. A new PP appears in the IR spectrum of oxidized starch. at 1734 cm-1, due to valence fluctuations of the C=O bond of aldehydes. The study showed that indirect electrocatalytic oxidation of starch with periodate with in situ oxidant regeneration proceeds most effectively on a ruthenium-titanium oxide electrode in a two-chamber cell, and the proposed approach is of interest for further development.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Svetlana Nikolaevna Kapaeva , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"

Junior Researcher

Galina Vasilievna Kornienko , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"

Candidate of Chemical Sciences, Senior Researcher

Vasily Leontievich Kornienko , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"

Doctor of Chemical Sciences, Leading Researcher

Svetlana Andreevna Novikova , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"

Candidate of Chemical Sciences, Researcher

Oksana Pavlovna Taran , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS", Siberian Federal University

Doctor of Chemical Sciences, Professor, Director

References

Valeyeva N., Khasanova G. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2013, vol. 16, no. 22, pp. 184–187. (in Russ.).

Rus'kina A.A., Popova N.V., Naumenko N.V., Rus'kin D.V. Vestnik Yuzhno-ural'skogo gosudarstvennogo universi-teta. Seriya: pishchevyye i biotekhnologii, 2017, vol. 5, no. 3, pp. 12–20. (in Russ.).

Rus'kina A.A., Kalinina I.V., Popova N.V., Naumenko Ye.Ye., Glaz N.V., Ufimtseva L.V. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologiy, 2020, vol. 82, no. 3 (85), pp. 176–182. (in Russ.).

Khalikov R.M., Nigamatullina G.B. Nauka-rastudent.ru, 2015, no. 1, pp. 51–51. (in Russ.).

Kalinina I., Ruskina A., Fatkullin R., Naumenko N., Potoroko I., Sonawane S., Shaik S. Bulgarian Journal of Agricul-tural Science, 2020, vol. 26, no. 3, pp. 690–695.

Iida Y., Tuziuti T., Yasui K., Towata A., Kozuka T. Innovative Food Science & Emerging Technologies, 2008, vol. 9, no. 2, pp. 140–146. https://doi.org/10.1016/j.ifset.2007.03.029.

Wen C., Zhang J., Zhang H., Duan Y., Ma H. Food chemistry, 2019, vol. 299, 125165. https://doi.org/10.1016/j.foodchem.2019.125165.

Wei B., Qi H., Wang Z., Bi Y., Zou J., Xu B., Ren X., Ma H. Ultrasonics Sonochemistry, 2020, vol. 61, 104854. https://doi.org/10.1016/j.ultsonch.2019.104854.

Pandeirada C.O., Achterweust M., Janssen H.-G., Westphal Y., Schols H.A. Carbohydrate Polymers, 2022, vol. 291, 119540. https://doi.org/10.1016/j.carbpol.2022.119540.

Zhang J., Cao S., Liu P., Shan Z. Starch Stärke, 2022, vol. 74, no. 3-4, 2100154. https://doi.org/10.1002/star.202100154.

Fiedorowicz M., Para A. Carbohydrate Polymers, 2006, vol. 63, no. 3, pp. 360–366. https://doi.org/10.1016/j.carbpol.2005.08.054.

Sibikina O., Iozep A., Moskvin A. Khimiko-farmatsevticheskiy zhurnal, 2009, vol. 43, no. 6, pp. 35–39. (in Russ.).

Para A., Karolczyk-Kostuch S., Hajdon T., Tomasik P. Polish journal of food and nutrition sciences, 2000, vol. 2, 09/50.

Korniyenko G.V., Kapayeva S.N., Malyar YU.N., Korniyenko V.L., Taran O.P. Khimiya rastitel'nogo syr'ya, 2021, no. 4, pp. 119–127. https://doi.org/10.14258/jcprm.20210410590. (in Russ.).

Martinez-Huitle C.A., Ferro S. Chemical society reviews, 2006, vol. 35, no. 12, pp. 1324–1340. https://doi.org/10.1039/b517632h.

Kuakpetoon D., Wang Y.-J. Carbohydrate Research, 2006, vol. 341, no. 11, pp. 1896–1915. https://doi.org/10.1016/j.carres.2006.04.013.

Korniyenko G.V., Kapayeva S.N., Korniyenko V.L., Skripnikov A.M., Taran O.P. Khimiya rastitel'nogo syr'ya, 2022, no. 4, pp. 77–88. https://doi.org/10.14258/jcprm.20220412022. (in Russ.).

Kenova T., Korniyenko G., Golubtsova O., Korniyenko V., Maksimov N. Zhurnal prikladnoy khimii, 2018, vol. 91, no. 9, pp. 1241–1251. https://doi.org/10.1134/S0044461818090025. (in Russ.).

Fioshin M.Ya., Smirnova M.G. Elektrokhimicheskiye sistemy v sinteze khimicheskikh produktov. [Electrochemical sys-tems in the synthesis of chemical products]. Moscow, 1985, p. 256. (in Russ.).

Published
2024-12-04
How to Cite
1. Kapaeva S. N., Kornienko G. V., Kornienko V. L., Novikova S. A., Taran O. P. INDIRECT OXIDATION OF STARCH BY PERIODATE WITH IN SITU REGENERATION OF AN OXIDIZER ON RUTHENIUM OXIDE TITANIUM AND PLATINUM ANODES IN AQUEOUS MEDIA // Chemistry of plant raw material, 2024. № 4. P. 100-111. URL: https://journal.asu.ru/cw/article/view/15315.
Section
Biopolymers of plants