INFLUENCE OF EXPLOSIVE AUTOHYDROLYSIS ON DYNAMIC MECHANICAL CHARACTERISTICS OF WOOD OAK QUERCUS ROBUR

  • Юрий (Yuriy) Геннадьевич (Gennad'yevich) Скурыдин (Skurydin) Altai State University Email: skur@rambler.ru
  • Елена (Elena) Михайловна (Mikhaylovna) Скурыдина (Skurydina) Altai State Pedagogical University Email: skudem@rambler.ru
  • Вадим (Vadim) Владимирович (Vladimirovich) Коньшин (Kon’shin) Altai State Technical University named after I.I. Polzunov http://orcid.org/0000-0002-9335-1824 Email: vadandral@mail.ru
  • Антон (Anton) Николаевич (Nikolaevich) Афаньков (Afan’kov) Altai State Technical University named after I.I. Polzunov Email: anantonafankov@yandex.ru
  • Жан (Jan) Юку (Yuku) Ногба (Nogba) Altai State Technical University named after I.I. Polzunov Email: bertrand86@mail.ru
  • Александр (Aleksandr) Анатольевич (Anatol'yevich) Беушев (Beushev) Altai State Technical University named after I.I. Polzunov Email: baa7@list.ru
Keywords: dynamic shear modulus, dynamic loss modulus, wood, hydrolysis, explosive autohydrolysis, glass transition temperature, rigidity factor

Abstract

The dynamic dependencies of the dynamic shear modulus and the loss modulus of Quercus Robur L. oak wood, subjected to pretreatment by explosive autohydrolysis, were obtained by dynamic mechanical analysis. It is shown that, as a result of an increase in the degree of hydrolysis stiffness, the glass transition temperature of the complex of amorphous wood components decreases. The maximum decrease in the glass transition temperature in comparison with the initial wood, determined from the positions of the minimum temperature derivative of the dynamic shear modulus and the peak at the temperature dependence of the dynamic loss modulus, is 75 °C and 45 °C, respectively. With increasing rigidity of the conditions of barothermal processing, the value of the dynamic shear modulus tends to decrease at room temperature. It was found that the temperatures of the maxima position on the temperature dependences of the dynamic loss modulus do not correspond to the temperatures of the minima on the temperature derivative, and with the increase in the degree of hydrolysis stiffness this discrepancy is significantly increased. Assumptions are made about the nature of the processes occurring in the wood tissue and causing these effects. It is most likely that the decrease in the glass transition temperature of the amorphous component in the samples of the hydrolyzed wood substance compared to the original wood is a consequence of the increase in the flexibility of the molecular chains of the lignocarbon complex. Reducing substances and fragments of low molecular weight lignin, formed during hydrolysis, act as a plasticizer and facilitate the mobility of the kinetic components of the wood substance.

Downloads

Download data is not yet available.

Author Biographies

Юрий (Yuriy) Геннадьевич (Gennad'yevich) Скурыдин (Skurydin), Altai State University

кандидат технических наук, доцент

Елена (Elena) Михайловна (Mikhaylovna) Скурыдина (Skurydina), Altai State Pedagogical University

кандидат технических наук, доцент

Вадим (Vadim) Владимирович (Vladimirovich) Коньшин (Kon’shin), Altai State Technical University named after I.I. Polzunov

доктор химических наук, доцент

Антон (Anton) Николаевич (Nikolaevich) Афаньков (Afan’kov), Altai State Technical University named after I.I. Polzunov

аспирант

Жан (Jan) Юку (Yuku) Ногба (Nogba), Altai State Technical University named after I.I. Polzunov

аспирант

Александр (Aleksandr) Анатольевич (Anatol'yevich) Беушев (Beushev), Altai State Technical University named after I.I. Polzunov

директор института, кандидат химических наук

References

Kurian J. K., Nair G. R., Hussain A., Vijaya Raghavan G.S. Feedstocks, logistics and pre-treatment processes for sustainablelignocellulosic biorefi neries: A comprehensive review Renewable and Sustainable // Energy Reviews. 2013. Vol. 25. Pp. 205–219. DOI:10.1016/j.rser.2013.04.019.

Negro M.J., Manzanares P., Oliva J.M., Ballesteros I., Ballesteros M. Changes in various physical/chemical parameters of Pinus Pinaster wood after steam explosion pretreatment // Biomass and Bioenergy. 2003. Vol. 25. Pp. 301 – 308. DOI:10.1016/S0961-9534(03)00017-5.

Asada C., Sasaki C., Uto Y., Sakafuji J., Nakamura Y. Effect of steam explosion pretreatment with ultra-high temperature and pressure on effective utilization of softwood biomass // Biochemical Engineering Journal. 2012. Vol. 60. Pp. 25–29. DOI:10.1016/j.bej.2011.09.013.

Yu Z., Zhang B., Yu F., Xu G., Song A. A real explosion: The requirement of steam explosion pretreatment // Bioresource Technology. 2012. Vol. 121. Pp. 335–341. DOI: 10.1016/j.biortech.2012.06.055.

Fengel D., Wegener G. Wood: chemistry, ultrastructure, reactions, Berlin, 1989, 613 p.

Шахзадян Э.А., Квачев Ю.П., Папков В.С. Температурные переходы в древесине и ее компонентах // Высокомолекулярные соединения. 1992. Cерия А. Т.34, № 9. C.3-14.

Шахзадян Э.А., Квачев Ю.П., Папков В.С. Динамические механические свойства некоторых пород древесины // Высокомолекулярные соединения. 1994. Серия А. Т. 36, № 8. С. 1298-1303.

Скурыдин Ю.Г. Строение и свойства композиционных материалов, полученных из отходов древесины после взрывного гидролиза : дис. … канд. техн. наук. Барнаул, 2000. 135 с.

Скурыдина Е.М. Разработка технологии композиционных материалов на основе древесины и полимерных наполнителей : дис. … канд. техн. наук. Барнаул, 2006. 170 с.

Startsev O.V., Salin B.N., Skuridin Y.G., Utemesov R.M., Nasonov A.D. Physical Properties and Molecular Mobility of New Wood Composite Plastic «Thermobalite» // Wood Sci Technol. 1999. Vol. 33. Рр. 73–83. DOI:10.1007/s002260050100.

Overend R.P., Chornet E. Fractionation of lignocellulosies by steam-aqueous pretreatments // Philos. Trans. Roy. Soc. London. 1987. Vol. A 321. № 1561. Pр. 523-536. DOI:10.1098/rsta.1987.0029.

Старцев О.В., Сортыяков Е.Д., Исупов В.В., Насонов А.Д., Коваленко А.А., Кротов А.С., Скурыдин Ю.Г. Акустическая спектроскопия полимерных композитных материалов, экспонированных в открытом космосе // Экспериментальные методы в физике структурно – неоднородных сред. Барнаул, 1997. С. 32-39.

Startsev O.V., Salin B.N., Skurydin Yu.G. Barothermalhydrolisis of wood in presence of mineral acids // Doklady Chemical Technology 2000. Vol. 370(5) Pp. 638-641.

температура стеклования
Published
2018-12-11
How to Cite
1. Скурыдин (Skurydin)Ю. (Yuriy) Г. (Gennad’yevich), Скурыдина (Skurydina)Е. (Elena) М. (Mikhaylovna), Коньшин (Kon’shin)В. (Vadim) В. (Vladimirovich), Афаньков (Afan’kov)А. (Anton) Н. (Nikolaevich), Ногба (Nogba)Ж. (Jan) Ю. (Yuku), Беушев (Beushev)А. (Aleksandr) А. (Anatol’yevich) INFLUENCE OF EXPLOSIVE AUTOHYDROLYSIS ON DYNAMIC MECHANICAL CHARACTERISTICS OF WOOD OAK QUERCUS ROBUR // Chemistry of plant raw material, 2018. № 4. P. 255-261. URL: https://journal.asu.ru/cw/article/view/3856.
Section
Technology