HYDROGENATION OF ABIES WOOD AND ETHANOL-LIGNIN BY MOLECULAR HYDROGEN IN SUPERCRITI-CAL ETHANOL OVER BIFUNCTIONAL RU/C CATALYST
Abstract
The effect of a bifunctional catalyst containing nano-dispersed ruthenium particles on an oxidized carbon support “Sibunit” on the yield and composition of products in the processes of hydrogenation of abies wood and abies ethanol-lignin in a supercritical ethanol medium at 250° C was studied. The presence of Ru/C catalyst resulted in a raise the ethanol-lignin conversion from 85 to 98 wt.%, the yield of liquid product from 75 to 85 wt.%, the yield of gases – by 1.5 times, but the yield of solid products dropped from 14 to 2.8 wt.%.
Ruthenium catalyst increased the conversion of abies wood by 12.5 wt.%, but did not affect the yield of liquid products. The yield of the solid residue in the presence of the catalyst was reduced by 12.5 wt.%, and the yield of gases rose by 2.5 times.
Simultaneously, the ruthenium catalyst promoted the process of hydrodeoxygenation of liquid products, diminution their average molecular mass from 1174 g/mol to 827 g/mol and the formation of monomeric and dimeric compounds with a molecular mass 193 and 426 g/mol, respectively. The solid residue of catalytic hydrogenation contained 70.1 wt.% of cellulose. Thus, the application of Ru/C catalyst in the process of hydrogenation of abies wood allowed the reductive fractionation of wood biomass into a solid cellulose product, liquid and gaseous products from lignin and hemicelluloses.
Downloads
Metrics
References
Sun Z., Fridrich B., de Santi A., Elangovan S., Barta K. Chemical Reviews, 2018, vol. 118, no. 2, pp. 614–678, DOI: 10.1021/acs.chemrev.7b00588.
Schutyser W., Renders T., Van den Bosch S., Koelewijn S.F., Beckham G.T., Sels B.F. Chemical Society Reviews, 2018, vol. 47, no. 3, pp. 852–908, DOI: 10.1039/C7CS00566K.
Taran O.P., Gromov N.V., Parmon V.N. Sustainable Catalysis for Biorefineries, 2018, pp. 25–64, DOI: 10.1039/9781788013567-00025.
Wang J., Xi J., Wang Y. Green Chemistry, 2015, vol. 17, no. 2, pp. 737–751, DOI: 10.1039/C4GC02034K.
Yamaguchi A., Sato O., Mimura N., Shirai M. Catalysis Today, 2016, vol. 265, pp. 199–202, DOI: 10.1016/j.cattod.2015.08.026.
Zakzeski J., Bruijnincx P.C.A., Jongerius A.L., Weckhuysen B.M. Chemical Reviews, 2010, vol. 110, no. 6, pp. 3552–3599, DOI: 10.1021/cr900354u.
Dagle V.L., Smith C., Flake M., Albrecht K.O., Gray M.J., Ramasamy K.K., Dagle R.A. Green Chemistry, 2016, vol. 18, no. 7, pp. 1880–1891, DOI: 10.1039/C5GC02298C.
Xu J., Xie X., Wang J., Jiang J. Green Chemistry, 2016, Vol. 18, no. 10, pp. 3124–3138, DOI: 10.1039/C5GC03070F.
Johansson A., Aaltonen O., Ylinen P. Biomass., 1987, vol. 13, no. 1, pp. 45–65, DOI: 10.1016/0144-4565(87)90071-0.
Zhang K., Pei Z., Wang D. Bioresource Technology, 2016, vol. 199, pp. 21–33, DOI: 10.1016/j.biortech.2015.08.102.
Rinaldi R., Jastrzebski R., Clough M.T., Ralph J., Kennema M., Bruijnincx P.C.A., Weckhuysen B.M. Angewandte Chemie International Edition, 2016, vol. 55, no. 29, pp. 8164–8215, DOI: 10.1002/anie.201510351.
Galkin M.V., Samec J.S.M. ChemSusChem, 2016, vol. 9, no. 13, pp. 1544–1558, DOI: 10.1002/cssc.201600237.
Renders T., Van den Bosch S., Koelewijn S.F., Schutyser W., Sels B.F. Energy & Environmental Science, 2017, vol. 10, no. 7, pp. 1551–1557, DOI: 10.1039/C7EE01298E.
Song Q., Wang F., Cai J., Wang Y., Zhang J., Yu W., Xu J. Energy and Environmental Science, 2013, vol. 6, no. 3, pp. 994–1007, DOI: 10.1039/c2ee23741e.
Galkin M.V., Samec J.S.M. ChemSusChem, 2014, vol. 7, no. 8, pp. 2154–2158, DOI: 10.1002/cssc.201402017.
Ferrini P., Rinaldi R. Angewandte Chemie International Edition, 2014, vol. 53, no. 33, pp. 8526–8526, DOI: 10.1002/anie.201406305.
Kuznetsov B.N., Sharypov V.I., Chesnokov N.V., Beregovtsova N.G., Baryshnikov S.V., Lavrenov A.V., Vosmer-ikov A.V., Agabekov V.E. Kinetics and Catalysis, 2015, vol. 56, no. 4, pp. 434–441, DOI: 10.1134/s0023158415040114.
Macala G.S., Matson T.D., Johnson C.L., Lewis R.S., Iretskii A.V., Ford P.C. ChemSusChem, 2009, vol. 2, no. 3, pp. 215–217, DOI: 10.1002/cssc.200900033.
Galkin M.V., Smit A.T., Subbotina E., Artemenko K.A., Bergquist J., Huijgen W.J.J., Samec J.S.M. ChemSusChem, 2016, vol. 9, no. 23, pp. 3280–3287, DOI: 10.1002/cssc.201600648.
Ayusheyev A.B., Taran O.P., Afinogenova I.I., Mishchenko T.I., Shashkov M.V., Sashkina K.A., Semeykina V.S., Parkhomchuk Ye.V., Agabekov V.Ye., Parmon V.N. Zhurnal SFU. Khimiya, 2016, vol. 9, no. 3, pp. 353–370, DOI: 10.17516/1998-2836-2016-9-3-353-370. (in Russ.).
Chikunov A.S., Shashkov M.V., Pestunov A.V., Kazachenko A.C., Mishchenko T.I., Taran O.P. Zhurnal SFU. Khimiya, 2018, vol. 11, no. 1, pp. 131–150, DOI: 10.17516/1998-2836-0064. (in Russ.).
Quesada-Medina J., López-Cremades F.J., Olivares-Carrillo P. Bioresource Technology, 2010, vol. 101, no. 21, pp. 8252–8260, DOI: 10.1016/j.biortech.2010.06.011.
Taran O.P., Polyanskaya E.M., Ogorodnikova O.L., Descorme C., Besson M., Parmon V.N. Catalysis in Industry, 2010, vol. 2, no. 4, pp. 381–386, DOI: 10.1134/S2070050410040136.
Taran O.P., Descorme C., Polyanskaya E.M., Ayusheev A.B., Besson M., Parmon V.N. Catalysis in Industry, 2013, vol. 5, no. 2, pp. 164–174, DOI: 10.1134/S2070050413020104.
Sluiter J.B., Ruiz R.O., Scarlata C.J., Sluiter A.D., Templeton D.W. Journal of Agricultural and Food Chemistry, 2010, vol. 58, no. 16, pp. 9043–9053, DOI: 10.1021/jf1008023.
Analytical Methods in Wood Chemistry, Pulping, and Papermaking, eds. E. Sjöström, R. Alén. Berlin-Heidelberg: Springer-Verlag, 1999.
Boonyasuwat S., Omotoso T., Resasco D.E., Crossley S.P. Catalysis Letters, 2013, vol. 143, no. 8, pp. 783–791, DOI: 10.1007/s10562-013-1033-3.
Omotoso T., Boonyasuwat S., Crossley S.P. Green Chemistry, 2014, vol. 16, no. 2, pp. 645–652, DOI: 10.1039/c3gc41377b.
Gromov N.V., Medvedeva T.B., Taran O.P., Bukhtiyarov A.V., Aymonier C., Prosvirin I.P., Parmon V.N. Topics in Catalysis, 2018, vol. 61, no. 18, pp. 1912–1927, DOI: 10.1007/s11244-018-1049-4.
Hirano Y., Sagata K., Kita Y. Applied Catalysis A: General, 2015, vol. 502, pp. 1–7, DOI: 10.1016/j.apcata.2015.05.008.
Ribeiro L.S., Órfão J.J.M., Pereira M.F.R. Bioresource Technology, 2018, vol. 263, pp. 402–409, DOI: 10.1016/j.biortech.2018.05.034.
Boakye P., Lee C.W., Lee W.M., Woo S.H. Clean Technology, 2016, vol. 22, no. 1, pp. 29–34, DOI: 10.7464/ksct.2016.22.1.029.
Koelewijn S.F., Cooreman C., Renders T., Andecochea Saiz C., Van den Bosch S., Schutyser W., De Leger W., Smet M., Van Puyvelde P., Witters H., Van der Bruggen B., Sels B.F. Green Chemistry, 2018, vol. 20, no. 5, pp. 1050–1058, DOI: 10.1039/c7gc02989f.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.







