HYDROGENATION OF ABIES WOOD AND ETHANOL-LIGNIN BY MOLECULAR HYDROGEN IN SUPERCRITI-CAL ETHANOL OVER BIFUNCTIONAL RU/C CATALYST

  • Aleksandr Sergeyevich Kazachenko Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS Email: leo_lion_leo@mail.ru
  • Sergey Viktorovich Baryshnikov Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS Email: BSV2861@mail.ru
  • Anna Il'inichna Chudina Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS Email: chudina@icct.ru
  • Yuriy Nikolayevich Malyar Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS; Siberian Federal University Email: yumalyar@gmail.com
  • Valentin Vladimirovich Sychev Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS Email: sychovmail@gmail.com
  • Oksana Pavlovna Taran Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS; Siberian Federal University Email: taran.op@icct.krasn.ru
  • Laurent Djakovitch IRCELYON Email: laurent.djakovitch@ircelyon.univ-lyon1.fr
  • Boris Nikolayevich Kuznetsov Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS; Siberian Federal University Email: bnk@icct.ru
Keywords: abies wood, ethanol-lignin, catalyst, Ru/C, supercritical ethanol, hydrogenation, composition of products

Abstract

The effect of a bifunctional catalyst containing nano-dispersed ruthenium particles on an oxidized carbon support “Sibunit” on the yield and composition of products in the processes of hydrogenation of abies wood and abies ethanol-lignin in a supercritical ethanol medium at 250° C was studied. The presence of Ru/C catalyst resulted in a raise the ethanol-lignin conversion from 85 to 98 wt.%, the yield of liquid product from 75 to 85 wt.%, the yield of gases – by 1.5 times, but the yield of solid products dropped from 14 to 2.8 wt.%.

Ruthenium catalyst increased the conversion of abies wood by 12.5 wt.%, but did not affect the yield of liquid products. The yield of the solid residue in the presence of the catalyst was reduced by 12.5 wt.%, and the yield of gases rose by 2.5 times.

Simultaneously, the ruthenium catalyst promoted the process of hydrodeoxygenation of liquid products, diminution their average molecular mass from 1174 g/mol to 827 g/mol and the formation of monomeric and dimeric compounds with a molecular mass 193 and 426 g/mol, respectively. The solid residue of catalytic hydrogenation contained 70.1 wt.% of cellulose. Thus, the application of Ru/C catalyst in the process of hydrogenation of abies wood allowed the reductive fractionation of wood biomass into a solid cellulose product, liquid and gaseous products from lignin and hemicelluloses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Aleksandr Sergeyevich Kazachenko, Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS

кандидат химических наук, научный сотрудник

Sergey Viktorovich Baryshnikov, Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS

кандидат химических наук, старший научный сотрудник

Anna Il'inichna Chudina, Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS

кандидат химических наук, старший научный сотрудник

Yuriy Nikolayevich Malyar, Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS; Siberian Federal University

кандидат химических наук, научный сотрудник

Valentin Vladimirovich Sychev, Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS

инженер

Oksana Pavlovna Taran, Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS; Siberian Federal University

1Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS, Deputy Director, Doctor of Chemistry, Professor, RAS.

2Siberian Federal University. Professor

Laurent Djakovitch, IRCELYON

Chercheur, PhD

Boris Nikolayevich Kuznetsov, Institute of Chemistry and Chemical Technology SB RAS, FRC "Krasnoyarsk Science Center" SB RAS; Siberian Federal University

доктор химических наук, профессор, заместитель директора, заведующий лабораторией, заведующий кафедрой

References

Sun Z., Fridrich B., de Santi A., Elangovan S., Barta K. Chemical Reviews, 2018, vol. 118, no. 2, pp. 614–678, DOI: 10.1021/acs.chemrev.7b00588.

Schutyser W., Renders T., Van den Bosch S., Koelewijn S.F., Beckham G.T., Sels B.F. Chemical Society Reviews, 2018, vol. 47, no. 3, pp. 852–908, DOI: 10.1039/C7CS00566K.

Taran O.P., Gromov N.V., Parmon V.N. Sustainable Catalysis for Biorefineries, 2018, pp. 25–64, DOI: 10.1039/9781788013567-00025.

Wang J., Xi J., Wang Y. Green Chemistry, 2015, vol. 17, no. 2, pp. 737–751, DOI: 10.1039/C4GC02034K.

Yamaguchi A., Sato O., Mimura N., Shirai M. Catalysis Today, 2016, vol. 265, pp. 199–202, DOI: 10.1016/j.cattod.2015.08.026.

Zakzeski J., Bruijnincx P.C.A., Jongerius A.L., Weckhuysen B.M. Chemical Reviews, 2010, vol. 110, no. 6, pp. 3552–3599, DOI: 10.1021/cr900354u.

Dagle V.L., Smith C., Flake M., Albrecht K.O., Gray M.J., Ramasamy K.K., Dagle R.A. Green Chemistry, 2016, vol. 18, no. 7, pp. 1880–1891, DOI: 10.1039/C5GC02298C.

Xu J., Xie X., Wang J., Jiang J. Green Chemistry, 2016, Vol. 18, no. 10, pp. 3124–3138, DOI: 10.1039/C5GC03070F.

Johansson A., Aaltonen O., Ylinen P. Biomass., 1987, vol. 13, no. 1, pp. 45–65, DOI: 10.1016/0144-4565(87)90071-0.

Zhang K., Pei Z., Wang D. Bioresource Technology, 2016, vol. 199, pp. 21–33, DOI: 10.1016/j.biortech.2015.08.102.

Rinaldi R., Jastrzebski R., Clough M.T., Ralph J., Kennema M., Bruijnincx P.C.A., Weckhuysen B.M. Angewandte Chemie International Edition, 2016, vol. 55, no. 29, pp. 8164–8215, DOI: 10.1002/anie.201510351.

Galkin M.V., Samec J.S.M. ChemSusChem, 2016, vol. 9, no. 13, pp. 1544–1558, DOI: 10.1002/cssc.201600237.

Renders T., Van den Bosch S., Koelewijn S.F., Schutyser W., Sels B.F. Energy & Environmental Science, 2017, vol. 10, no. 7, pp. 1551–1557, DOI: 10.1039/C7EE01298E.

Song Q., Wang F., Cai J., Wang Y., Zhang J., Yu W., Xu J. Energy and Environmental Science, 2013, vol. 6, no. 3, pp. 994–1007, DOI: 10.1039/c2ee23741e.

Galkin M.V., Samec J.S.M. ChemSusChem, 2014, vol. 7, no. 8, pp. 2154–2158, DOI: 10.1002/cssc.201402017.

Ferrini P., Rinaldi R. Angewandte Chemie International Edition, 2014, vol. 53, no. 33, pp. 8526–8526, DOI: 10.1002/anie.201406305.

Kuznetsov B.N., Sharypov V.I., Chesnokov N.V., Beregovtsova N.G., Baryshnikov S.V., Lavrenov A.V., Vosmer-ikov A.V., Agabekov V.E. Kinetics and Catalysis, 2015, vol. 56, no. 4, pp. 434–441, DOI: 10.1134/s0023158415040114.

Macala G.S., Matson T.D., Johnson C.L., Lewis R.S., Iretskii A.V., Ford P.C. ChemSusChem, 2009, vol. 2, no. 3, pp. 215–217, DOI: 10.1002/cssc.200900033.

Galkin M.V., Smit A.T., Subbotina E., Artemenko K.A., Bergquist J., Huijgen W.J.J., Samec J.S.M. ChemSusChem, 2016, vol. 9, no. 23, pp. 3280–3287, DOI: 10.1002/cssc.201600648.

Ayusheyev A.B., Taran O.P., Afinogenova I.I., Mishchenko T.I., Shashkov M.V., Sashkina K.A., Semeykina V.S., Parkhomchuk Ye.V., Agabekov V.Ye., Parmon V.N. Zhurnal SFU. Khimiya, 2016, vol. 9, no. 3, pp. 353–370, DOI: 10.17516/1998-2836-2016-9-3-353-370. (in Russ.).

Chikunov A.S., Shashkov M.V., Pestunov A.V., Kazachenko A.C., Mishchenko T.I., Taran O.P. Zhurnal SFU. Khimiya, 2018, vol. 11, no. 1, pp. 131–150, DOI: 10.17516/1998-2836-0064. (in Russ.).

Quesada-Medina J., López-Cremades F.J., Olivares-Carrillo P. Bioresource Technology, 2010, vol. 101, no. 21, pp. 8252–8260, DOI: 10.1016/j.biortech.2010.06.011.

Taran O.P., Polyanskaya E.M., Ogorodnikova O.L., Descorme C., Besson M., Parmon V.N. Catalysis in Industry, 2010, vol. 2, no. 4, pp. 381–386, DOI: 10.1134/S2070050410040136.

Taran O.P., Descorme C., Polyanskaya E.M., Ayusheev A.B., Besson M., Parmon V.N. Catalysis in Industry, 2013, vol. 5, no. 2, pp. 164–174, DOI: 10.1134/S2070050413020104.

Sluiter J.B., Ruiz R.O., Scarlata C.J., Sluiter A.D., Templeton D.W. Journal of Agricultural and Food Chemistry, 2010, vol. 58, no. 16, pp. 9043–9053, DOI: 10.1021/jf1008023.

Analytical Methods in Wood Chemistry, Pulping, and Papermaking, eds. E. Sjöström, R. Alén. Berlin-Heidelberg: Springer-Verlag, 1999.

Boonyasuwat S., Omotoso T., Resasco D.E., Crossley S.P. Catalysis Letters, 2013, vol. 143, no. 8, pp. 783–791, DOI: 10.1007/s10562-013-1033-3.

Omotoso T., Boonyasuwat S., Crossley S.P. Green Chemistry, 2014, vol. 16, no. 2, pp. 645–652, DOI: 10.1039/c3gc41377b.

Gromov N.V., Medvedeva T.B., Taran O.P., Bukhtiyarov A.V., Aymonier C., Prosvirin I.P., Parmon V.N. Topics in Catalysis, 2018, vol. 61, no. 18, pp. 1912–1927, DOI: 10.1007/s11244-018-1049-4.

Hirano Y., Sagata K., Kita Y. Applied Catalysis A: General, 2015, vol. 502, pp. 1–7, DOI: 10.1016/j.apcata.2015.05.008.

Ribeiro L.S., Órfão J.J.M., Pereira M.F.R. Bioresource Technology, 2018, vol. 263, pp. 402–409, DOI: 10.1016/j.biortech.2018.05.034.

Boakye P., Lee C.W., Lee W.M., Woo S.H. Clean Technology, 2016, vol. 22, no. 1, pp. 29–34, DOI: 10.7464/ksct.2016.22.1.029.

Koelewijn S.F., Cooreman C., Renders T., Andecochea Saiz C., Van den Bosch S., Schutyser W., De Leger W., Smet M., Van Puyvelde P., Witters H., Van der Bruggen B., Sels B.F. Green Chemistry, 2018, vol. 20, no. 5, pp. 1050–1058, DOI: 10.1039/c7gc02989f.

Кривые ММР
Published
2019-03-24
How to Cite
1. Kazachenko A. S., Baryshnikov S. V., Chudina A. I., Malyar Y. N., Sychev V. V., Taran O. P., Djakovitch L., Kuznetsov B. N. HYDROGENATION OF ABIES WOOD AND ETHANOL-LIGNIN BY MOLECULAR HYDROGEN IN SUPERCRITI-CAL ETHANOL OVER BIFUNCTIONAL RU/C CATALYST // Chemistry of plant raw material, 2019. № 2. P. 15-26. URL: https://journal.asu.ru/cw/article/view/5108.
Section
Biopolymers of plants