CONTENT AND DYNAMICS OF FRUCTOSE-CONTAINING CARBOHYDRATES IN SPECIES OF THE CAMPANULACEAE JUSS.
UDC 615.322+581.192
Abstract
The peculiarities of accumulation of fructose-containing carbohydrates (fructans) in underground organs of eight Campanulaceae species were investigated. For 7 from the 8 studied species, high accumulation of fructose-containing carbohydrates was shown, primarily with a high degree of polymerization – polyfructans (from 35–40 to 50%). It is comparable with the fructans content in species of the Asteraceae, the richest in these compounds, or exceeds it. The amount of polyfructans in all studied species was minimal during the regrowth period, and then increased significantly during intensive growth and budding. Thus, the periods of active growth and fructans accumulation occurred simultaneously, and were not separated in time. This sharply distinguishes these species from representatives of other families of the class Magnoliopsida, studied by us earlier - Asteraceae and Boraginaceae, in which the processes of growth and fructans accumulation did not coincide in time. The fructan polymerization index in the studied Campanulaceae species is quite high throughout the growing season. During fruiting – the beginning of the dying off of the aboveground part, it varies within the range of 0.85 – 1.0. This distinguishes them from the previously studied species of other families, in which polymerization index significantly decreased during active growth and budding. Thus, Campanulaceae species are apparently of considerable theoretical and practical interest as promising sources of fructose-containing carbohydrates.
Downloads
Metrics
References
Hendry G.A.F. New Phytologist, 1993, vol. 123, no. 1, pp. 3–14. https://doi.org/10.1111/j.1469-8137.1993.tb04525.x.
Versluys M., Kirte O., Öner E.T., Van den Ende W. Plant Cell Environ., 2018, vol. 41, pp. 16–38. https://doi.org/10.1111/pce.13070.
Márquez-López R.E., Uc-Chuc M.A., Loyola-Vargas V.M., Santiago-García P.A., López M.G. Carbohydrate Poly-mer Technologies and Applications, 2023, vol. 6, article 100343. https://doi.org/10.1016/j.carpta.2023.100343.
Pommerrenig B., Ludewig F., Cvetkovic J., Trentmann O., Klemens P.A.W., Neuhaus H.E. Plant Cell Physiol., 2018, vol. 59 (7), pp. 1290–1299. https://doi.org/10.1093/pcp/pcy037.
Kayshev V.G., Lukin N.D., Seregin S.N., Korniyenko A.V. Pishchevaya promyshlennost', 2018, vol. 5, pp. 8–17. (in Russ.).
Man S., Liu T., Yao Y., Lu Y., Ma L., Lu F. Carbohydrate Polymers, 2021, vol. 252, article 117155. https://doi.org/10.1016/j.carbpol.2020.117155.
Hendry G.A.F. New Phytol., 1987, vol. 106 (s1), pp. 201–216. https://doi.org/10.1111/j.1469-8137.1987.tb04690.x.
Pollock C.J. New Phytol., 1986, vol. 104 (1), pp. 1–24. https://doi.org/10.1111/j.1469-8137.1986.tb00629.x.
Van den Ende W. Front. Plant Sci., 2013, vol. 4. https://doi.org/10.3389/fpls.2013.00247.
Pollard C.J., Amuti K.S. Biochem. Syst. Ecol., 1981, vol. 9 (1), pp. 69–78. https://doi.org/10.1016/0305-1978(81)90062-4.
Versluys M., Kirte O., Öner E.T., Van den Ende W. Plant Cell Environ., 2018, vol. 41, pp. 16–38. https://doi.org/10.1111/pce.13070.
He J.-Y., Ma N., Zhu S., Komatsu K., Li Z.-Y., Fu W.-M. J. Nat. Med., 2015, vol. 69, pp. 1–21. https://doi.org/10.1007/s11418-014-0861-9.
Zou Y.-F., Zhang Y.-Y., Zhu Z.-K. et al. J. Sci. Food Agric., 2021, vol. 101, no. 6, pp. 2491–2499. https://doi.org/10.1002/jsfa.10875.
Li J., Wang T., Zhu Z., Yang F., Cao L., Gao J. Molecules, 2017, vol. 22, 2258. https://doi.org/10.3390/molecules22122258.
Li J., Zhang X., Cao L., Ji J., Gao J. Molecules, 2018, vol. 23, 3123. https://doi.org/10.3390/molecules23123123.
Zhang L., Wang Y., Yang D., Zhang C., Zhang N., Li M., Liu Y. Journal of Ethnopharmacology, 2015, vol. 164, pp. 147–161. https://doi.org/10.1016/j.jep.2015.01.052.
Pang D.-J., Huang C., Chen M.-L., Chen Y.-L., Fu Y.-P., Paulsen B.S., Rise F., Zhang B.-Z., Chen Z.-L., Jia R.-Y., Li L.-X., Song X., Feng B., Ni X.-Q., Yin Z.-Q., Zou Y.-F. Molecules, 2019, vol. 24, 1199. https://doi.org/10.3390/molecules24071199.
Wilson R.G., Kachman S.D., Martin A.R. Weed Science, 2001, vol. 49, no. 2, pp. 150–155. https://doi.org/10.1614/0043-1745(2001)049[0150:SCIGFS]2.0.CO;2.
Stolze A., Wanke A., van Deenen N., Geyer R., Prufer D., Schuze Gronover C. Plant Biotechnology Journal, 2017, vol. 15, no. 6, pp. 740–753. https://doi.org/10.1111/pbi.12672.
Marx S.P., Nösberger J., Frehner M. New phytologist, 1997, vol. 135, no. 2, pp. 267–277. https://doi.org/10.1046/j.1469-8137.1997.00641.x.
dos Santos C.S., Abraão C.F., de Moraes M.G. Acta Botanica Brasilica, 2018, vol. 32, no. 1, pp. 70–79. https://doi.org/10.1590/0102-33062017abb0214.
Van den Ende W., Mintiens A., Speleers H., Onuoha A.A., Van Laere A. New phytologist, 1996, vol. 132, no. 4, pp. 555–563. https://doi.org/10.1111/j.1469-8137.1996.tb01874.x.
D'yakova N.A., Slivkin A.I., Gaponov S.P., Mikhaylovskaya I.Yu. Vestnik Voronezhskogo gosudarstvennogo univer-siteta. Seriya: Khimiya. Biologiya. Farmatsiya, 2016, no. 4, pp. 133–136. (in Russ.).
Plants of the World Online (POWO). Facilitated by the Royal Botanic Gardens, Kew. URL: http://www.plantsoftheworldonline.org.
Olennikov D.N., Tankhayeva L.M. Khimiya rastitel'nogo syr'ya, 2008, no. 1, pp. 87–93. (in Russ.).
Vasfilova Ye.S., Vorob'yeva T.A. Rastitel'nyye resursy, 2020, vol. 56, no. 4, pp. 363–374. https://doi.org/10.31857/S0033994620040081. (in Russ.).
Vasfilova Ye.S., Vorob'yeva T.A. Khimiya rastitel'nogo syr'ya, 2022, no. 1, pp. 71–80. https://doi.org/10.14258/jcprm.20220110140. (in Russ.).
Bagautdinova R.I., Fedoseyeva G.P., Okoneshnikova T.F. Khimiya i komp'yuternoye modelirovaniye. Butlerovskiye soobshcheniya, 2001, vol. 2, no. 5, pp. 13–16. (in Russ.).
Olennikov D.N., Tankhayeva L.M., Chekhirova, G.V., Petrov Ye.V. Khimiya rastitel'nogo syr'ya, 2008, no. 1, pp. 95–99. (in Russ.).
Olennikov D.N., Tankhayeva L.M. Khimiya rastitel'nogo syr'ya, 2010, no. 1, pp. 115–120. (in Russ.).
Tankhayeva L.M., Olennikov D.N. Khimiya rastitel'nogo syr'ya, 2010, no. 2, pp. 85–89. (in Russ.).
Yevdokimova O.V. Voprosy obespecheniya kachestva lekarstvennykh sredstv, 2017, no. 4 (18), pp. 8–13. (in Russ.).
Bizzarri M., Delledonne M., Ferrarini A., Tononi P., Zago E., Vittori D., Damiani F., Paolocci F. Front. Plant Sci., 2020, vol. 11, 101. https://doi.org/10.3389/fpls.2020.00101.
Roberfroid M.B. Journal of Nutrition, 2007, vol. 137, no. 11, pp. 2493–2502.
Copyright (c) 2025 chemistry of plant raw material

This work is licensed under a Creative Commons Attribution 4.0 International License.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.







