ACCUMULATION OF LIGNIN AND PHENOLIC ACIDS IN THE CELL WALL OF CUCUMBER HYPOCOTYLS UNDER THE INFLUENCE OF PECTIN OLIGOSACCHARIDES

UDC 547.458.88

  • Nikolay Yuryevich Selivanov Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences Email: selivanovn64@yandex.ru
  • Olga Gennadyevna Selivanova Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences https://orcid.org/0009-0007-8725-9654 Email: selivanova_og@mail.ru
  • Anna Alekseevna Galitskaya Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences https://orcid.org/0000-0002-7364-4726 Email: ann.gal@mail.ru
  • Larisa Yuryevna Matora Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences https://orcid.org/0000-0001-5654-8292 Email: matora-l@ibppm.ru
Keywords: Cucumis sativus, pectin, oligosaccharides, biological activity, phenolic acids

Abstract

The effectiveness of the use of citrus pectin fermentolysis products to stimulate the manifestations of phytoimmunity and resistance to abiogenic stresses has been demonstrated. It has been shown that treatment with oligosaccharides of deesterified citrus pectin (polygalacturonic acid, PGA) induces the synthesis of lignin and an increase in the content of phenolic acids in the cell walls of cucumber hypocotyls (Cucumis sativus). It was found that modification of PGK by glucosamine residues increases the activity of its fermentolysis products and leads to a 10% increase in the total content of phenolic compounds in the cell walls of cucumber hypocotyls compared with the results of processing plants with fragments of unmodified PGK. At the same time, the absolute content of the dominant phenolic components – caffeic and p-coumaric acids increases by 55% and 27%, respectively, and the spectrum of minor components of phenolic acids in the cell wall of etiolated cucumber hypocotyls also changes. The modification variant proposed in the work allows to obtain polysaccharides with a regulated content of the injected ligand. The condensation reaction with the formation of a chemically resistant amide bond makes it possible to effectively dope carbohydrate polysaccharides and their fragments, which increases the possibility of obtaining bioactive glycoconjugates for use as inducers of resistance to abiogenic stresses and diseases that localize infection during plant infection.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Nikolay Yuryevich Selivanov , Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences

candidate of biological sciences, senior researcher of the immunochemistry laboratory

Olga Gennadyevna Selivanova , Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences

candidate of biological sciences, scientific secretary

Anna Alekseevna Galitskaya , Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences

candidate of biological sciences, researcher of the immunochemistry laboratory

Larisa Yuryevna Matora , Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences

doctor of biological sciences, professor, head of the immunochemistry laboratory

References

Mandal S.M., Chakraborty D., Dey S. Plant signaling & behavior, 2010, vol. 5, no. 4, pp. 359–368. https://doi.org/10.4161/psb.5.4.10871.

Van Loon L.C. Mechanisms of Resistance to Plant Diseases. Dordrecht: Springer, 2000, pp. 521–574. https://doi.org/10.1007/978-94-011-3937-3_13.

Weng J.-K., Chapple C. New Phytologist, 2010, vol. 187, no. 2, pp. 273–285. https://doi.org/10.1111/j.1469-8137.2010.03327.x.

Baxter H.L., Stewart Jr C.N. Biofuels, 2013, vol. 4, no. 6, pp. 635–650. https://doi.org/10.4155/bfs.13.56.

Karaki N., Aljawish A., Muniglia L., Bouguet-Bonnet S., Leclerc S., Paris C., Jasniewski J., Humeau-Virot C. Enzyme and Microbial Technology, 2017, vol. 104, pp. 1–8. https://doi.org/10.1016/j.enzmictec.2017.05.001.

Koike N., Hyakumachi M., Kageyama K., Tsuyumu S., Doke N. European Journal of Plant Pathology, 2001, vol. 107, pp. 523–533. https://doi.org/10.1023/A:10112038268057.

Cabrera J.-C., Boland A., Cambier P., Frettinger P., Van Cutsem P. Glycobiology, 2010, vol. 20, no. 6, pp. 1775–1786. https://doi.org/10.1093/glycob/cwq034.

Ridley B.L., O'Neill M.A., Mohnen D.A. Phytochemistry, 2001, vol. 57, pp. 929–967. https://doi.org/10.1016/S0031-9422(01)00113-3.

Jermendi E., Beukema M., van den Berg M.A., de Vos P., Schols H.A. Carbohydrate Polymers, 2022, vol. 277, arti-cle 118813. https://doi.org/10.1016/j.carbpol.2021.118813.

O’Neill M.A., Ishii T., Albersheim P., Darvill A.G. Annual Review of Plant Biology, 2004, vol. 55, no. 1, pp. 109–139. https://doi.org/10.1146/annurev.arplant.55.031903.141750.

Oosterveld A., Beldman G., Schols H.A., Voragen A.G.J. Carbohydrate Research, 2000, vol. 328, no. 2, pp. 185–197. https://doi.org/10.1016/s0008-6215(00)00095-1.

Scott R.W. Anal. Chem., 1979, vol. 51, pp. 936–941. https://doi.org/10.1021/ac50043a036.

Ralet M.-C., Dronnet V., Buchhol H.C., Thibault J.-F. Carbohydr. Res., 2001, vol. 336, pp. 117–125. https://doi.org/10.1016/S0008-6215(01)00248-8.

Robertsen B. Biology and molecular biology of plant-pathogen interactions. Berlin: Springer-Verlag, 1986, pp. 177–183. https://doi.org/10.1007/978-3-642-82849-2_14.

Hoare D.G., Koshland D.E. J. Biol. Chem., 1967, vol. 242, pp. 2447–2453. https://doi.org/10.1016/S0021-9258(18)95981-8.

Gertsyuk M.N., Sergeyev V.N., Tsytovich A.V., Dolinnaya N.G., Kukhar' V.P. Bioorganicheskaya khimiya, 1990, vol. 16, pp. 1268–1276. (in Russ.).

Wissink M.J.B., Beernink R., Pieper J.S., Poot A.A., Engbers G.H.M., Beugeling T., van Aken, W.G., Feijen J. Bio-materials, 2001, vol. 22, pp. 151–163. https://doi.org/10.1016/S0142-9612(00)00164-2.

Hermanson G. Bioconjugate techniques. 2nd Edition. Rockford, Illinois, USA: Elsevier, 2008, pp. 215–219.

Limberg G., Korner R., Buchholt H.C., Christensen T.M.I.E., Roepstorff P., Mikkelsen J.D. Carbohydr. Res., 2000, vol. 327, pp. 321–332. https://doi.org/10.1016/S0008-6215(00)00068-9.

Rivero R.M., Ruiz J.M., Garcıa P.C., Lopez-Lefebre L.R., Sanchez E., Romero L. Plant Science, 2001, vol. 160, pp. 315–321. https://doi.org/10.1016/S0168-9452(00)00395-2.

Siegrist J., Jeblick W., Kauss H. Plant Physiol., 1994, vol. 105, pp. 1365–1374. https://doi.org/10.1104/pp.105.4.1365.

Graham M.Y., Graham T.L. Plant Physiol., 1991, vol. 97, pp. 1445–1455. https://doi.org/10.1104/pp.97.4.1445.

Selivanov N.Yu., Sorokina I.V., Selivanova O.G., Sokolov O.I., Ignatov V.V. Biokhimiya, 2008, vol. 73, pp. 98–106. https://doi.org/10.1007/s10541-008-1012-2. (in Russ.).

Campbell A.D., Labavitch J.M. Plant Physiol., 1991, vol. 97, pp. 706–713. https://doi.org/10.1104/pp.97.2.706.

Spiro M.D., Ridley B.L., Eberhard S., Kates K.A., Mathieu Y., O’Neill M.A., Mohnen D., Guern J., Darvill A., Al-bersheim P. Plant Physiol., 1998, vol. 116, pp. 1289–1298. https://doi.org/10.1104/pp.116.4.1289.

Published
2025-06-13
How to Cite
1. Selivanov N. Y., Selivanova O. G., Galitskaya A. A., Matora L. Y. ACCUMULATION OF LIGNIN AND PHENOLIC ACIDS IN THE CELL WALL OF CUCUMBER HYPOCOTYLS UNDER THE INFLUENCE OF PECTIN OLIGOSACCHARIDES // Chemistry of plant raw material, 2025. № 2. P. 93-102. URL: https://journal.asu.ru/cw/article/view/13544.
Section
Biopolymers of plants