PLANT POLYMERS AND THEIR SORPTION ACTIVITY TO RADIUM IONS

UDC 544.723, 544.726, 54-71

  • Konstantin Grigorievich Bogolitsyn Northern (Arctic) Federal University named after M.V. Lomonosov; Institute of Environmental Problems of the North FRC KIA UB RAS Email: k.bogolitsin@narfu.ru
  • Anatoly Petrovich Karmanov Institute of Biology FRC Komi SC UB RAS Email: apk0948@yandex.ru
  • Lyudmila Sergeevna Kocheva Institute of Biology FRC Komi SC UB RAS Email: karko07@mail.ru
  • Natalya Gelievna Rachkova Institute of Biology FRC Komi SC UB RAS Email: rachkova@ib.komisc.ru
  • Anastasia Eduardovna Parshina Northern (Arctic) Federal University named after M.V. Lomonosov Email: a.parshina@narfu.ru
  • Darya Alekseevna Polomarchuk Northern (Arctic) Federal University named after M.V. Lomonosov Email: PiratkaSlastoyna@yandex.ru
Keywords: Cellulose, Lichenin, Lignin, Sorption, Radium

Abstract

This article presents the results of a sorption capacity investigation of a plant-based sorbent of plant origin when applied to 226Ra ions in aqueous media. The findings indicate that cellulose sorbents, a protein-polysaccharide complex and cellulose from the brown algae Saccharina latissima, demonstrate a high efficiency of binding 226Ra ions, with respective values of 95.2% and 76.6%. The sorption capacity of Cetraria islandica lichenin and Polytrichum commune moss lignin were found to be 74.6 and 86.2%, respectively. Desorption tests were conducted using distilled water, 1M hydrochloric acid, and 1M ammonium acetate. The results indicated that cellulose sorbents (protein-polysaccharide complex and brown algae cellulose) retained the radionuclide the most tightly. The sorption activity of the studied objects is determined by their chemical composition and the specifics of their capillary-porous structure, including the diameter and volume of pores and the specific surface area. These factors influence the complex mechanism of the sorption process of 226Ra ions on the sorbents under study, such as water cellulose, lichenin, and lignin. The findings of this study indicate the potential for utilizing these alternative plants as a source of novel, multifunctional sorption materials for the effective binding of radionuclides.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Konstantin Grigorievich Bogolitsyn , Northern (Arctic) Federal University named after M.V. Lomonosov; Institute of Environmental Problems of the North FRC KIA UB RAS

Doctor of Chemical Sciences, Professor, Head of Department, Director

Anatoly Petrovich Karmanov , Institute of Biology FRC Komi SC UB RAS

Leading Researcher, Doctor of Chemical Sciences, Professor

Lyudmila Sergeevna Kocheva , Institute of Biology FRC Komi SC UB RAS

Leading Researcher, Doctor of Chemical Sciences, Professor

Natalya Gelievna Rachkova , Institute of Biology FRC Komi SC UB RAS

Head of Laboratory

Anastasia Eduardovna Parshina , Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Chemical Sciences, Junior Researcher

Darya Alekseevna Polomarchuk , Northern (Arctic) Federal University named after M.V. Lomonosov

Postgraduate Student

References

IAEA. Behaviour of radium // The environmental behaviour of radium. International atomic energy agency. Vienna, 2014, 267 p.

Tripler E., Haquin G., Koch J., Yehuda Z., Shani U. Chemosphere, 2014, vol. 104, pp. 205–211. https://doi.org/10.1016/j.chemosphere.2013.11.020.

Reinoso-Maset E., Ly J. Journal of Environmental Radioactivity, 2016, vol. 157, pp. 136–148. https://doi.org/10.1016/j.jenvrad.2016.03.014.

Bordelet G., Beaucaire C., Phrommavanh V., Descostes M. Chemosphere, 2018, vol. 202, pp. 651–660. https://doi.org/10.1016/j.chemosphere.2018.03.140.

Kittnerová J., Drtinová B., Štamberg K., Vopálka D., Evans N., Deissmann G., Lange S. Applied Geochemistry, 2020, vol. 122. https://doi.org/10.1016/j.apgeochem.2020.104713.

Wang M., Hearon S.E., Phillips T.D. Food Additives & Contaminants: Part A, 2020, vol. 37, no. 2, pp. 332–341. https://doi.org/10.1080/19440049.2019.1662493.

Erenturk S.A., Kaygun A.K. Journal of Radioanalytical and Nuclear Chemistry, 2017, vol. 311, no. 2, pp. 1227–1233. https://doi.org/10.1007/s10967-016-5047-3.

Semenishchev V.S., Tomashova L.A., Titova S.M. Journal of Radioanalytical and Nuclear Chemistry, 2021, vol. 327, no. 2, pp. 997–1003. https://doi.org/10.1007/s10967-020-07576-w.

Semenishchev V.S., Ishimbaeva E.N., Rogozhnikov V.A., Titova S.M., Skripchenko S.Yu., Nalivaiko K.A. Journal of Radioanalytical and Nuclear Chemistry, 2023, vol. 333, no. 1, pp. 429–439. https://doi.org/10.1007/s10967-023-09269-6.

Kazakov A.G., Garashchenko B.L., Yakovlev R.Yu., Vinokurov S.E., Kalmykov S.N., Myasoedov B.F. Diamond and Related Materials, 2020, vol. 104, article 107752. https://doi.org/10.1016/j.diamond.2020.107752.

Zinicovscaia I., Safonov A., Zelenina D., Ershova Y., Boldyrev K. Algal Research, 2020, vol. 51, article 102075. https://doi.org/10.1016/j.algal.2020.102075.

Levy-Ontman O., Yanay C., Paz-Tal O., Wolfson A. Journal of Polymers and the Environment, 2023, vol. 31, no. 6, pp. 2321–2333. https://doi.org/10.1007/s10924-023-02760-x.

Shin J., Kwak J., Lee Y-G., Kim S., Son C., Cho K.H., Lee S-H., Park Y., Ren X., Chon K. Environmental Research, 2021, vol. 199, article 111346. https://doi.org/10.1016/j.envres.2021.111346.

Nikiforov A.F., Yurchenko V.V. Sorbtsionnyye i khromatograficheskiye protsessy, 2010, vol. 10, no. 5, pp. 676–684. (in Russ.).

Bogolitsyn K.G., Parshina A.E., Ivanchenko N.L., Bogdanovich N.I., Arkhilin M.A. Cellulose, 2022, vol. 29, no. 13, pp. 7037–7048. https://doi.org/10.1007/s10570-022-04707-2.

Parshina A.E., Bogolitsyn K.G., Ivanchenko N.L., Polomarchuk D.A. Khimiya rastitel'nogo syr'ya, 2022, no. 3, pp. 325–336. https://doi.org/10.14258/jcprm.20220311299. (in Russ.).

Meysurova A.F., Khizhnyak S.D., Notov A.A., Pakhomov P.M. Fundamental'nyye issledovaniya, 2013, vol. 42, no. 10, pp. 785–792. (in Russ.).

Mostalygina L.V., Kostin A.V., Koksharova Yu.V., Vikulin D.I. Vestnik BGTU im. V.G. Shukhova, 2016, no. 3, pp. 148–151. (in Russ.).

Semenova Ye.F., Teplitskaya L.M., Goncharov M.A., Goncharov D.A. Byulleten' GNBS, 2021, no. 140, pp. 120–129. (in Russ.).

Gomez I., Lüning K. European Journal of Phycology, 2001, vol. 36, no. 4, pp. 391–395. https://doi.org/10.1080/09670260110001735548.

Bogolitsyn K.G., Parshina A.E., Shkayeva N.V., Aleshina L.A., Prusskiy A.I., Sidorova O.V., Bogdanovich N.I., Arkhilin M.A. Sverkhkriticheskiye flyuidy: teoriya i praktika, 2021, vol. 16, no. 2, pp. 110–130. https://doi.org/10.34984/SCFTP.2021.16.2.013. (in Russ.).

Patent 2129159 (RU). 20.04.1999. (in Russ.).

Pepper J.M., Baylis P.E.T., Adler E. Canadian Journal of Chemistry, 1959, vol. 37, no. 8, pp. 1241–1248. https://doi.org/10.1139/v59-183.

Rachkova N. Vestnik IB, 2005, no. 8, pp. 8–12. (in Russ.).

Karmanov A.P., Kanarskiy A.V., Kocheva L.S., Kanarskaya Z.A., Gematdinova V.M., Bogdanovich N.I., Pato-va O.A., Rachkova N.G. Khimiya rastitel'nogo syr'ya, 2019, no. 4, pp. 431–440. https://doi.org/10.14258/jcprm.2019045210. (in Russ.).

Rachkova N.G., Shuktomova I.I. Russian Journal of Applied Chemistry, 2010, vol. 83, no. 4, pp. 620–624. https://doi.org/10.1134/S1070427210040099.

Karmanov A.P., Kocheva L.S., Karmanova Yu.A. Khimiya rastitel'nogo syr'ya, 2015, no. 4, pp. 109–114. https://doi.org/10.14258/jcprm.201404377. (in Russ.).

Bogolitsyn K.G., Parshina A.E., Druzhinina A.S., Shul'gina Ye.V. Khimiya rastitel'nogo syr'ya, 2020, no. 3, pp. 35–46. https://doi.org/10.14258/jcprm.2020037417. (in Russ.).

Andreyeva S.V., Yablonenko L.A. Vse o myase, 2018, no. 2, pp. 18–21. https://doi.org/10.21323/2071-2499-2018-2-18-21. (in Russ.).

Patrusheva O.V., Volkova V.N., Pervil'yev A.V., Yarusova S.B., Shalanin V.A., Zemnukhova L.A. Khimiya v in-teresakh ustoychivogo razvitiya, 2020, vol. 28, no. 2, pp. 202–209. https://doi.org/10.15372/khur2020220. (in Russ.).

Kocheva L.S., Karmanov A.P., Kanarskiy A.V., Kanarskaya Z.A., Semenov E.I., Bogdanovich N.I. Khimiya ras-titel'nogo syr'ya, 2022, no. 2, pp. 73–84. https://doi.org/10.14258/jcprm.20220210730. (in Russ.).

Sleptsov I.V., Prokop'yev I.A., Kan M.U., Voronov I.V., Rozhina S.M. Khimiko-farmatsevticheskiy zhurnal, 2021, vol. 55, no. 1, pp. 39–42. https://doi.org/10.30906/0023-1134-2021-55-1-39-42. (in Russ.).

Smirnov A.K., Smotrina T.V., Shkodich V.F., Kochnev A.M. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, no. 14, pp. 83–86. (in Russ.).

Wang T., Zheng J., Liu H., Peng Q., Zhang X. Environmental Science and Pollution Research, 2021, vol. 28, no. 11, pp. 13800–13818. https://doi.org/10.1007/s11356-020-11571-9.

Nikiforova T.Ye., Kozlov V.A. Fizikokhimiya poverkhnosti i zashchita materialov, 2016, vol. 52, no. 3, pp. 243–271. https://doi.org/10.7868/s0044185616030219. (in Russ.).

Published
2025-03-13
How to Cite
1. Bogolitsyn K. G., Karmanov A. P., Kocheva L. S., Rachkova N. G., Parshina A. E., Polomarchuk D. A. PLANT POLYMERS AND THEIR SORPTION ACTIVITY TO RADIUM IONS // Chemistry of plant raw material, 2025. № 1. P. 375-384. URL: https://journal.asu.ru/cw/article/view/14557.
Section
Application