THE EFFECTIVENESS OF DRY ETHANOL EXTRACTS OF AGRIMONIA PILOSA LEDEB. AND SOME OTHER PLANTS OF THE ROSOIDEAE SUBFAMILY OF THE ROSACEAE FAMILY FOR INACTIVATION OF SARS-COV-2 AND HERPES SIMPLEX VIRUS 2 TYPE

UDC 615.281

  • Elena Ivanovna Kazachinskaya Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences, State Research Center of Virology and Biotechnology Vector Email: alenakaz@vector.nsc.ru
  • Larisa Nikolaevna Zibareva National Research Tomsk State University Email: zibareva.lara@yandex.ru
  • Alexander Alekseevich Chepurnov Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences Email: alexa.che.purnov@gmail.com
  • Alla Vladimirovna Ivanova State Research Center of Virology and Biotechnology Vector Email: Ivanova_AV@vector.nsc.ru
  • Yulia Vladimirovna Kononova Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences Email: yuliakononova07@yandex.ru
  • Dmitry Nikolaevich Shaulo Central Siberian Botanical Garden SB RAS Email: dshaulo@yandex.ru
  • Vladimir Vladimirovich Romanyuk Research and Production Company Zolotaya Dolina Email: romanuyk.vladimir@aurivallis.com
  • Alexander Mikhailovich Shestopalov Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences Email: shestopalov2@mail.ru
Keywords: HSV-2, SARS-CoV-2, dry ethanol extracts, virus inactivation

Abstract

Such representatives of the Rosoideae subfamily of the Rosaceae family Agrimonia pilosa Ledeb., Alchemilla vulgaris L., Sanguisorba officinalis L., Sanguisorba alpina Bunge and Geum rivale L. in nature Russian Federation are widespread. The antiviral activity and phenolic composition of dry ethanol extracts of individual parts (leaves, flowers and stems) these plants have been studied. The extracts were dissolved in DMSO and in the reaction of direct inactivation (neutralization) of virus in vitro their activity against two pathogens the SARS-CoV-2 and HSV-2 in the range of 50% effective concentrations of 1.09±0.24 – 50.78±11.2 μg/ml was revealed. It has been shown that the extracts exhibit low cytotoxicity which affects the values of the selectivity indices. Flavonoid cynaroside (0.79%) have been identified in the leaves of A. pilosa. In extracts of other Rosoideae spp. chemical compounds such as chlorogenic acid, rutin, quercetin, isoquercitrin, quercitrin hydrate, epicatechin, vicenin-2 and several unidentified flavonoids have been identified. Based on the data obtained, it can be assumed that the activity of the studied ethanol extracts of Rosoideae spp. during direct inactivation (neutralization), SARS-CoV-2 and HSV-2 are associated with polyphenolic compounds. The results obtained can become the basis for the search for individual plant-based biologically active substances that inhibit the "entry" of these viruses into a sensitive cell, as well as for the development of inexpensive drugs for the prevention and/or treatment of COVID-19 and to reduce the recurrence of chronic genital herpes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Elena Ivanovna Kazachinskaya , Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences, State Research Center of Virology and Biotechnology Vector

Doctor of Biological Sciences, Leading Researcher

Larisa Nikolaevna Zibareva , National Research Tomsk State University

Doctor of Chemical Sciences, Senior Researcher, Head of the Phytochemistry Laboratory

Alexander Alekseevich Chepurnov , Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences

Doctor of Biological Sciences, Professor, Head of the Laboratory of Particularly Dangerous Infections

Alla Vladimirovna Ivanova , State Research Center of Virology and Biotechnology Vector

Candidate of Biological Sciences, Senior Researcher

Yulia Vladimirovna Kononova , Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences

Candidate of Biological Sciences, Senior Researcher

Dmitry Nikolaevich Shaulo , Central Siberian Botanical Garden SB RAS

Candidate of Biological Sciences, Leading Researcher, Head of the Herbarium Laboratory

Vladimir Vladimirovich Romanyuk , Research and Production Company Zolotaya Dolina

Candidate of Biological Sciences, sciences, head of the laboratory

Alexander Mikhailovich Shestopalov , Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences

Doctor of Biological Sciences, Professor, Director

References

Coronavirus disease (COVID-19) Epidemiological Updates and Monthly Operational Updates. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.

García-Lledó A., Gómez-Pavón J., Castillo J.G.D. et al. Rev. Esp. Quimioter., 2022, vol. 35, no. 2, pp. 115–130. https://doi.org/10.37201/req/158.2021.

Murgia F., Fiamma M., Serra S. et al. Clin. Exp. Med., 2023, vol. 23, no. 4, pp. 1251–1263. https://doi.org/10.1007/s10238-022-00959-1.

Abdoli A., Falahi S., Kenarkoohi A. Clin. Exp. Med., 2021, vol. 22, no. 3, pp. 327–346. https://doi.org/10.1007/s10238-021-00751-7.

Stamos J.D., Lee L.H., Taylor C., Elias T., Adams S.D. Microorganisms, 2022, vol. 10, no. 7, 1462. https://doi.org/10.3390/microorganisms10071462.

Huang Y., Song Y., Li J., Lv C., Chen Z.-S., Liu Z. Discov. Today., 2022, vol. 27, no. 1, pp. 185–195. https://doi.org/10.1016/j.drudis.2021.10.004.

Zaynab M., Fatima M., Sharif Y. et al. Microb. Pathog., 2019, vol. 137, 103728. https://doi.org/10.1016/j.micpath.2019.103728.

Yarovaya O.I., Salakhutdinov N.F. Uspekhi khimii, 2021, vol. 90, no. 4, pp. 488–510. https://doi.org/10.1070/RCR4969. (in Russ.).

Garber A., Barnard L., Pickrell C. J. Evid. Based Integr. Med., 2021, vol. 26, 2515690X20978394. https://doi.org/10.1177/2515690X20978394.

Zannella C., Giugliano R., Chianese A. et al. Viruses, 2021, vol. 13, no. 7, 1263. https://doi.org/10.3390/v13071263.

Mostafa A., Mostafa-Hedeab G., Elhady H.A., Mohamed E.A., Eledrdery A.Y., Alruwaili S.H., Al-Abd A.M., Al-layeh A.K. J. Genet. Eng. Biotechnol., 2023, vol. 21, no. 1, 145. https://doi.org/10.1186/s43141-023-00624-4.

Kazachinskaya Ye.I., Romanova V.D., Ivanova A.V., Chepurnov A.A., Murtazaliyeva Z.A., Kononova Yu.V., Shau-lo D.N., Romanyuk V.V., Shestopalov A.M. Yug Rossii: ekologiya, razvitiye, 2022, vol. 17, no. 4, pp. 111–129. https://doi.org/10.18470/1992-1098-2022-4-111-129. (in Russ.).

Kazachinskaya Ye.I., Kononova Yu.V., Ivanova A.V., Zibareva L.N., Chepurnov A.A., Romanyuk V.V., Biybola-tov A.A., Gulyayeva M.A., Shestopalov A.M. Yug Rossii: ekologiya, razvitiye, 2023, vol. 18, no. 3, pp. 103–117. https://doi.org/10.18470/1992-1098-2023-3-103-117. (in Russ.).

Benzekri R., Limam F., Bouslama L. Adv. Tradit. Med., 2020, vol. 20, pp. 223–231. https://doi.org/10.1007/s13596-020-00430-0.

Ishimoto K., Hatanaka N., Otani S., Maeda S., Xu B., Yasugi M., Moore J.E., Suzuki M., Nakagawa S., Yamasaki S. Lett. Appl. Microbiol., 2022, vol. 74, no. 1, pp. 2–7. https://doi.org/10.1111/lam.13591.

Kazachinskaya Ye.I., Chepurnov A.A., Kononova Yu.V., Shelemba A.A., Romanyuk V.V., Magomedov M.G., Shestopalov A.M. Yug Rossii: ekologiya, razvitiye, 2022, vol. 17, no. 2, pp. 76–90. https://doi.org/10.18470/1992-1098-2022-2-76-90. (in Russ.).

Kazachinskaya Ye.I., Chepurnov A.A., Shelemba A.A., Guseynova S.A., Magomedov M.G., Kononova Yu.V., Rom-anyuk V.V., Shestopalov A.M. Yug Rossii: ekologiya, razvitiye, 2022, vol. 17, no. 3, pp. 135–152. https://doi.org/10.18470/1992-1098-2022-3-135-152. (in Russ.).

Kazachinskaia E.I., Chepurnov A.A., Shcherbakov D.N, Kononova Yu.V., Shanshin D.V., Romanova V.D., Khrip-ko O.P., Saroyan T.A., Gulyaeva M.A., Voevoda M.I., Shestopalov A.M. Patogens, 2021, vol. 10, no. 11, 1421. https://doi.org/10.3390/patogens10111421.

Teplyakova T.V., Kazachinskaya Ye.I., Ryabchikova Ye.I., Kosogova T.A., Taranov O.S., Omigov V.V., Loktev V.B. Uspekhi mikologii, 2012, vol. 3, pp. 418–419. (in Russ.).

Teplyakova T.V., Pyankov O.V., Safatov A.S., Ovchinnikova A.S., Kosogova T.A., Skarnovich M.O., Filippova E.I., Poteshkina A.L. Int. J. Med. Mushrooms, 2022, vol. 24, no. 2, pp. 23–30. https://doi.org/10.1615/IntJMedMushrooms.2021042012.

Shipovalov A.V., Kudrov G.A., Kartashov M.Yu., Drachkova I.A., P'yankov O.V., Omigov V.V., Taranov O.S., Teplyakova T.V. Voprosy virusologii, 2023, vol. 68, no. 2, pp. 152–160. https://doi.org/10.36233/0507-4088-168. (in Russ.).

Benencia F., Courrèges M.C. Phytother Res., 2000, vol. 14, no. 7, pp. 495–500. https://doi.org/10.1002/1099-1573(200011)14:7<495::aid-ptr650>3.0.co;2-8.

Umashankar V., Deshpande S.H., Hegde H.V., Singh I., Chattopadhyay D. Front Med., 2021, vol. 8, 672629. https://doi.org/10.3389/fmed.2021.672629.

Bělonožníková K., Sladkovská E., Kavan D., Hýsková V., Hodek P., Šmíd D., Ryšlavá H. Molecules, 2023, vol. 28, no. 3. 1019. https://doi.org/10.3390/molecules28031019.

Mohamed F.F., Anhlan D., Schöfbänker M., Schreiber A., Classen N., Hensel A., Hempel G., Scholz W., Kühn J., Hrincius E.R., Ludwig S. Pharmaceuticals, 2022, vol. 15, no. 5, 530. https://doi.org/10.3390/ph15050530.

Liu H., Ye F., Sun Q., Liang H., Li C., Li S., Lu R., Huang B., Tan W., Lai L. J. Enzyme Inhib. Med. Chem., 2021, vol. 36, no. 1, pp. 497–503. https://doi.org/10.1080/14756366.2021.1873977.

Kanjanasirirat P., Suksatu A., Manopwisedjaroen S. et al. Sci. Rep., 2020, vol. 10, no. 1, 19963. https://doi.org/10.1038/s41598-020-77003-3.

Xie P., Fang Y., Shen Z., Shao Y., Ma Q., Yang Z., Zhao J., Li H., Li R., Dong S., Wen W., Xia X. Phytomedicine, 2021, no. 93, 153808. https://doi.org/10.1016/j.phymed.2021.153808.

Nie C., Trimpert J., Moon S., Haag R., Gilmore K., Kaufer B.B., Seeberger P.H. Virol. J., 2021, vol. 18, no. 1, 182. https://doi.org/10.1186/s12985-021-01651-8.

Cheng H.-Y., Lin T.-C., Yang C.-M., Wang K.-C., Lin C.-C. Microbes Infect., 2004, no. 6, pp. 738–744. https://doi.org/10.1016/j.micinf.2004.03.009.

Benzekri R., Bouslama L., Papetti A., Hammami M., Smaoui A., Limam F. Microb. Pathog., 2018, no. 114, pp. 291–298. https://doi.org/10.1016/j.micpath.2017.12.017.

Churqui M.P., Lind L., Thörn K., Svensson A., Savolainen O., Aranda K.T., Eriksson K. J. Ethnopharmacol., 2018, vol. 210, pp. 192–197. https://doi.org/10.1016/j.jep.2017.08.010.

Donalisio M., Cagno V., Civra A., Gibellini D., Musumeci G., Rittà M., Ghosh M., Lembo D. J. Ethnopharmacol., 2018, vol. 213, pp. 403–408. https://doi.org/10.1016/j.jep.2017.11.039.

Bugert J.J., Hucke F., Zanetta P., Bassetto M., Brancale A. Virus Genes, 2020, vol. 56, no. 2, pp. 150–167. https://doi.org/10.1007/s11262-020-01737-5.

Mollel J.T., Said J.S., Masalu R.J., Hannoun C., Mbunde M.V.N., Nondo R.S.O., Bergström T., Trybala E. J. Eth-nopharmacol., 2022, vol. 292, 115204. https://doi.org/10.1016/j.jep.2022.115204.

Shaldayeva T.M., Kostikova V.A., Vysochina G.I. Khimiya rastitel'nogo syr'ya, 2021, no. 1, pp. 151–158. https://doi.org/10.14258/jcprm.2021016628. (in Russ.).

Islam M.N., Ishita I.J., Jung H.A., Choi J.S. Food and Chemical Toxicology, 2014, vol. 69, pp. 55–62. https://doi.org/10.1016/j.fct.2014.03.042.

Published
2025-06-06
How to Cite
1. Kazachinskaya E. I., Zibareva L. N., Chepurnov A. A., Ivanova A. V., Kononova Y. V., Shaulo D. N., Romanyuk V. V., Shestopalov A. M. THE EFFECTIVENESS OF DRY ETHANOL EXTRACTS OF AGRIMONIA PILOSA LEDEB. AND SOME OTHER PLANTS OF THE ROSOIDEAE SUBFAMILY OF THE ROSACEAE FAMILY FOR INACTIVATION OF SARS-COV-2 AND HERPES SIMPLEX VIRUS 2 TYPE // Chemistry of plant raw material, 2025. № 2. P. 286-299. URL: https://journal.asu.ru/cw/article/view/14782.
Section
Biotechnology