BIOLOGICALLY ACTIVE TERPENES AND THEIR HETEROFUNCTIONAL DERIVATIVES: NATURAL SOURCES, PROPERTIES, DETERMINATION AND APPLICATION PROSPECTS
UDC 54.061: 54.062:542.06:543.631
Abstract
Terpenes and terpenoids (their derivatives including heteroatoms in structure) belong to the largest and diversified class of natural compounds, the vast majority of which occurs in higher plants. They are responsible for the biological activity of essential oils. The latter have found wide application in medicine, agriculture and the production of perfumes and cosmetics. Interest about the structure and properties of the essential oils components is growing because of their application perspective in the sight of new information on biological activity. This review summarizes the data on the main classes of terpenes, their structure, properties and applications, natural sources, extraction, methods of identification and determination of its content in plant raw materials, biological samples, and food products. Up-to-date systematized information in this area allows us to develop more effective ways of their synthesis and further application in agriculture and food industries. Encapsulation is used to increase the stability and solubility in water of terpene-based preparations. Nanoemulsions are one of the most promising encapsulated forms of terpenes. Nanoemulsification makes it possible to expand the terpenes and their derivatives application scope in food storage and in the production of veterinary drugs and modern biopesticides.
Downloads
Metrics
References
Masyita A., Sari R.M., Astuti A.D., Yasir B., Rumata N.R., Emran T.B., Nainu F., Simal-Gandara J. Food Chemistry: X, 2022, vol. 13, article 100217. https://doi.org/10.1016/j.fochx.2022.100217.
Tkachev A.V. Issledovaniye letuchikh veshchestv rasteniy. [Study of plant volatile substances]. Novosibirsk, 2008, 969 p. (in Russ.).
Manousi N., Sarakatsianos I., Samanidou V. Engineering Tools in the Beverage Industry. Woodhead Publishing, 2019, pp. 283–314. https://doi.org/10.1016/B978-0-12-815258-4.00010-X.
Rudoy D.V., Pakhomov V.I., Ol'shevskaya A.V., Odabashyan M.Yu., Pavlov P.D. Politematicheskiy setevoy el-ektronnyy nauchnyy zhurnal KubGAU, 2022, vol. 181, no. 7, pp. 1–18. https://doi.org/10.21515/1990-4665-181-014. (in Russ.).
Tkachev A.V. Khimiya rastitel'nogo syr'ya, 2017, no. 3, pp. 5–37. https://doi.org/10.14258/jcprm.2017032712. (in Russ.).
Zebec Z., Wilkes J., Jervis A.J., Scrutton N.S., Takano E., Breitling R. Current Opinion in Chemical Biology, 2016, vol. 34, pp. 37–43. https://doi.org/10.1016/j.cbpa.2016.06.002.
Cagliero C., Mastellone G., Marengo A., Bicchi C., Sgorbini B., Rubiolo P. Analytica Chimica Acta, 2021, vol. 1147, pp. 240–258. https://doi.org/10.1016/j.aca.2020.11.029.
Escobar A., Pérez M., Romanelli G., Blustein G. Arabian Journal of Chemistry, 2020, vol. 13, no. 12, pp. 9243–9269. https://doi.org/10.1016/j.arabjc.2020.11.009.
Mukherjee P.K. Quality control and evaluation of herbal drugs. Elsevier, 2019, pp. 237–328. https://doi.org/10.1016/B978-0-12-813374-3.00007-7.
Martins M.A.R., Silva L.P., Ferreira O., Schröder B., Coutinho J.A.P., Pinho S.P. Journal of Molecular Liquids, 2017, vol. 241, pp. 996–1002. https://doi.org/10.1016/j.molliq.2017.06.099.
Garg A., Sharma R., Dey P., Kundu A., Kim H.S., Bhakta T., Kumar A. Recent Advances in Natural Products Analy-sis. Elsevier, 2020, pp. 393–426. https://doi.org/10.1016/B978-0-12-816455-6.00011-1.
National Center for Biotechnology Information. PubChem Compound Summary for CID 6557, Isoprene. URL: https://pubchem.ncbi.nlm.nih.gov/compound/Isoprene.
Clarke S. Essential Chemistry for Aromatherapy. Elsevier Ltd., 2008, pp. 41–77. https://doi.org/10.1016/B978-0-443-10403-9.00003-0.
Das S., Chaudhari A.K., Singh A., Deepika, Singh V.K., Dwivedy A.K., Dubey N.K. Functional and Preservative Properties of Phytochemicals. Academic Press, 2020, pp. 165–207. https://doi.org/10.1016/B978-0-12-818593-3.00006-3.
Lorigooini Z., Jamshidi-kia F., Dodman S. Recent Advances in Natural Products Analysis. Elsevier, 2020, pp. 289–312. https://doi.org/10.1016/B978-0-12-816455-6.00008-1.
Kabir A., Cacciagrano F., Tartaglia A., Lipsi M., Ulusoy H.I., Locatelli M. Recent Advances in Natural Products Anal-ysis. Elsevier, 2020, pp. 274–286. https://doi.org/10.1016/B978-0-12-816455-6.00007-X.
Lockwood G.B. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2013, pp. 1–11. https://doi.org/10.1016/B978-0-12-409547-2.04768-5.
Alves-Silva J.M., Dias dos Santos S.M., Pintado M.E., Pérez-Álvarez J.A., Fernández-López J., Viuda-Martos M. Food Control, 2013, vol. 32, no. 2, pp. 371–378. https://doi.org/10.1016/j.foodcont.2012.12.022.
López-Hortas L., Rodríguez P., Díaz-Reinoso B., Gaspar M.C., de Sousa H.C., Braga M.E.M., Domínguez H. Journal of Supercritical Fluids, 2022, vol. 188, no. 4, article 105652. https://doi.org/10.1016/j.supflu.2022.105652.
Khorshidian N., Yousefi M., Khanniri E., Mortazavian A.M. Innovative Food Science and Emerging Technologies, 2018, vol. 45, pp. 62–72. https://doi.org/10.1016/j.ifset.2017.09.020.
PubChem, National Institutes of Health. URL: https://pubchem.ncbi.nlm.nih.gov (Compound Summary for CID 31253, Myrcene; Compound Summary for CID 6549, Linalool; Compound Summary for CID 3314, Eugenol; Com-pound Summary for CID 2758, Eucalyptol; Compound Summary for CID 637563, Anethole; Compound Summary for CID 8294, Linalyl acetate).
Rajabi M., Ghanbari H., Barfi B., Asghari A., Haji-Esfandiari S. Food Research International, 2014, vol. 62, pp. 761–770. https://doi.org/10.1016/j.foodres.2014.04.034.
Sun J. Alternative Medicine Review, 2007, vol. 12, no. 3, pp. 259–264.
Rasmussen L.H., Rosenfjeld M. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, vol. 1149, article 122159. https://doi.org/10.1016/j.jchromb.2020.122159.
Bohlmann J., Gershenzon J., Aubourg S. Recent Advances in Phytochemistry, 2000, vol. 34, pp. 109–150. https://doi.org/10.1016/S0079-9920(00)80006-4.
Domrachev D.V., Karpova Ye.V., Goroshkevich S.N., Tkachev A.V. Khimiya rastitel'nogo syr'ya, 2011, no. 4, pp. 89–98. (in Russ.).
Pachura N., Zimmer A., Grzywna K., Figiel A., Szumny A., Łyczko J. Food Chemistry, 2022, vol. 397, no. 3, arti-cle 133802. https://doi.org/10.1016/j.foodchem.2022.133802.
Bellumori M., Michelozzi M., Innocenti M., Congiu F., Cencetti G., Mulinacci N. Talanta, 2015, vol. 131, pp. 81–87. https://doi.org/10.1016/j.talanta.2014.07.073.
Morozov S.V., Tkacheva N.I., Tkachev A.V. Khimiya rastitel'nogo syr'ya, 2018, no. 4, pp. 5–28. https://doi.org/10.14258/jcprm.2018044003. (in Russ.).
López-Gutiérrez N., Romero-González R., Vidal J.L.M., Frenich A.G. Journal of Pharmaceutical and Biomedical Analysis, 2016, vol. 121, pp. 151–160. https://doi.org/10.1016/j.jpba.2016.01.021.
Gao X., Wang N., Jia J., Wang P., Zhang A., Qin X. Journal of Pharmaceutical and Biomedical Analysis, 2020, vol. 177. Article 112732. https://doi.org/10.1016/j.jpba.2019.06.029.
Tarakanov V.V., Tkachev A.V., Kal'chenko L.I., Yefimov V.M., Rogovtsev R.V. Interekspo Geo-Sibir', 2012, vol. 4, pp. 115–122.
Serra S. Studies in Natural Products Chemistry, 2015, vol. 46, pp. 201–226. https://doi.org/10.1016/B978-0-444-63462-7.00007-5.
Tang X., Allemann R.K., Wirth T. European Journal of Organic Chemistry, 2017, vol. 2017, pp. 414–418. https://doi.org/10.1002/ejoc.201601388.
Mahdi A.A., Al-Maqtari Q.A., Mohammed J.K., Al-Ansi W., Cui H., Lin L. Food Bioscience, 2021, vol. 43, no. 1, ar-ticle 101226. https://doi.org/10.1016/j.fbio.2021.101226.
Sandeep, Ghosh S. Studies in Natural Products Chemistry. Elsevier, 2020, vol. 67, pp. 411–461. https://doi.org/10.1016/B978-0-12-819483-6.00012-6.
Zhang Q.W., Lin L.G., Ye W.C. Chinese Medicine, 2018, vol. 13, no. 1, article 20. https://doi.org/10.1186/s13020-018-0177-x.
Vilas-Boas S.M., Teixeira G., Rosini S., Martins M.A.R., Gaschi P.S., Coutinho J.A.P., Ferreira O., Pinho S.P. Jour-nal of Molecular Liquids, 2021, vol. 323, article 114647. https://doi.org/10.1016/j.molliq.2020.114647.
Zhu F., Xu J., Ke Y., Huang S., Zeng F., Luan T., Ouyang G. Analytica Chimica Acta, 2013, vol. 794, pp. 1–14. https://doi.org/10.1016/j.aca.2013.05.016.
Krakowska-Sieprawska A., Kiełbasa A., Rafińska K., Ligor M., Buszewski B. Molecules, 2022, vol. 27, no. 3, arti-cle 730. https://doi.org/10.3390/molecules27030730.
Bellumori M., Innocenti M., Binello A., Boffa L., Mulinacci N., Cravotto G. Comptes Rendus Chimie, 2016, vol. 19, no. 6, pp. 699–706. https://doi.org/10.1016/j.crci.2015.12.013.
Ormeño E., Goldstein A., Niinemets Ü. Trends in Analytical Chemistry, 2011, vol. 30, no. 7, pp. 978–989. https://doi.org/10.1016/j.trac.2011.04.006.
Cozzolino R., Ramezani S., Martignetti A., Mari A., Piacente S., De Giulio B. Natural Product Research, 2016, vol. 30, no. 7, pp. 841–848. https://doi.org/10.1080/14786419.2015.1076817.
Lee Y.G., Choi W.S., Yang S.O., Hwang-Bo J., Kim H.G., Fang M., Yi T.H., Kang S.C., Lee Y.H., Baek N.I. Plants, 2021, vol. 10, no. 2, article 224. https://doi.org/10.3390/plants10020224.
Câmara J.S., Perestrelo R., Berenguer C.V., Andrade C.F.P., Gomes T.M., Olayanju B., Kabir A., Rocha M.R.C., Teixeira J.A., Pereira J.A.M. Molecules, 2022, vol. 27, no. 9, article 2953. https://doi.org/10.3390/molecules27092953.
Diez-Simon C., Ammerlaan B., van den Berg M., van Duynhoven J., Jacobs D., Mumm R., Hall R.D. Journal of Chromatography A, 2020, vol. 1624, article 461191. https://doi.org/10.1016/j.chroma.2020.461191.
Bordiga M., Rinaldi M., Locatelli M., Piana G., Travaglia F., Coïsson J.D., Arlorio M. Food Chemistry, 2013, vol. 140, no. 1-2, pp. 57–67. https://doi.org/10.1016/j.foodchem.2013.02.051.
Vyviurska O., Špánik I. Microchemical Journal, 2020, vol. 152, article 104385. https://doi.org/10.1016/j.microc.2019.104385.
Furdíková K., Khvalbota L., Machyňáková A., Špánik I. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, vol. 1167, no. 3, article 122565. https://doi.org/10.1016/j.jchromb.2021.122565.
Vichi S., Aumatell M.R., Buxaderas S., López-Tamames E. Analytica Chimica Acta, 2008, vol. 628, no. 2, pp. 222–229. https://doi.org/10.1016/j.aca.2008.09.005.
Cacho J.I., Campillo N., Viñas P., Hernández-Córdoba M. Journal of Chromatography A, 2015, vol. 1399, pp. 18–24. https://doi.org/10.1016/j.chroma.2015.04.041.
Ramos L. Chemical Analysis of Food (Second Edition). Academic Press, 2020, pp. 3–31. https://doi.org/10.1016/B978-0-12-813266-1.00001-2.
Dmitrienko S.G., Apyari V.V., Tolmacheva V.V., Gorbunova M.V. Journal of Analytical Chemistry, 2020, vol. 75, no. 10, pp. 1237–1251. https://doi.org/10.1134/S1061934820100056.
Kalyniukova A., Holuša J., Musiolek D., Sedlakova-Kadukova J., Płotka-Wasylka J., Andruch V. Industrial Crops and Products, 2021, vol. 172, article 114047. https://doi.org/10.1016/j.indcrop.2021.114047.
Shi X., Yang Y., Ren H., Sun S., Mu L.t., Chen X., Wang Y., Zhang Y., Wang L.h., Sun C. Phytochemistry Letters, 2020, vol. 35, pp. 175–185. https://doi.org/10.1016/j.phytol.2019.11.017.
Tang B., Bi W., Zhang H., Row K.H. Chromatographia, 2014, vol. 77, pp. 373–377. https://doi.org/10.1007/s10337-013-2607-3.
Liquid-Phase Extraction. Elsevier, 2019, 816 p.
Jeong K.M., Jin Y., Yoo D.E., Han S.Y., Kim E.M., Lee J. Food Chemistry, 2018, vol. 251, pp. 69–76. https://doi.org/10.1016/j.foodchem.2018.01.079.
Zhang Y.-Y., Elam E., Ni Z.-J., Zhang F., Thakur K., Wang S., Zhang J.-G., Wei Z.-J. Food Chemistry, 2022, vol. 366, article 130583. https://doi.org/10.1016/j.foodchem.2021.130583.
Lopez P., van Sisseren M., De Marco S., Jekel A., de Nijs M., Mol H.G.J. Food Chemistry, 2015, vol. 174, pp. 407–416. https://doi.org/10.1016/j.foodchem.2014.11.011.
Xu X.-B., Murtada K., Pawliszyn J. Talanta, 2021, vol. 221, article 121446. https://doi.org/10.1016/j.talanta.2020.121446.
Chmiel T., Kupska M., Wardencki W., Namieśnik J. Food Chemistry, 2017, vol. 221, pp. 1041–1056. https://doi.org/10.1016/j.foodchem.2016.11.057.
Oller-Ruiz A., Viñas P., Campillo N., Fenoll J., Hernández-Córdoba M. Food Analytical Methods, 2017, vol. 10, no. 10, pp. 3615–3622. https://doi.org/10.1007/s12161-017-0937-8.
He F., Qian Y.L., Qian M.C. Food Chemistry, 2018, vol. 239, pp. 622–630. https://doi.org/10.1016/j.foodchem.2017.06.136.
Perestrelo R., Silva C., Silva P., Câmara J.S. Food Chemistry, 2017, vol. 227, pp. 111–121. https://doi.org/10.1016/j.foodchem.2017.01.090.
Kasiotis K.M., Tzouganaki Z.D., Machera K. Science of The Total Environment, 2018, vol. 625, pp. 96–105. https://doi.org/10.1016/j.scitotenv.2017.12.244.
Rubió L., Serra A., Macià A., Borràs X., Romero M.-P., Motilva M.-J. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, vol. 905, pp. 75–84. https://doi.org/10.1016/j.jchromb.2012.07.040.
Wang S., Li D., Pi J., Li W., Zhang B., Qi D., Li N., Guo P., Liu Z. Journal of Pharmacy and Pharmacology, 2017, vol. 69, no. 11, pp. 1540–1551. https://doi.org/10.1111/jphp.12791.
Dong Q., Qiu L.-L., Zhang C.-E., Chen L.-H., Feng W.-W., Ma L.-N., Yan D., Niu M., Wang J.-b., Xiao X.-h. Jour-nal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, vol. 1026, pp. 145–151. https://doi.org/10.1016/j.jchromb.2015.12.024.
GOST 34606-2019. Metod opredeleniya soderzhaniya aromaticheskikh komponentov s pomoshch'yu gazozhidkostnoy khromatografii s plamenno-ionizatsionnym detektirovaniyem. Sredstva lekarstvennyye dlya veterinarnogo primeneni-ya, korma, kormovyye dobavki. [GOST 34606-2019. Method for determination of aromatic components content using gas-liquid chromatography with flame ionization detection. Veterinary medicinal products, feed, feed additives]. Mos-cow, 2019, 10 p. (in Russ.).
Cuevas F.J., Moreno-Rojas J.M., Ruiz-Moreno M.J. Food Chemistry, 2017, vol. 221, no. 1, pp. 1930–1938. https://doi.org/10.1016/j.foodchem.2016.11.156.
Ren J.-N., Tai Y.-N., Dong M., Shao J.-H., Yang S.-Z., Pan S.-Y., Fan G. Food Chemistry, 2015, vol. 185, pp. 25–32. https://doi.org/10.1016/j.foodchem.2015.03.142.
Marti G., Boccard J., Mehl F., Debrus B., Marcourt L., Merle P., Delort E., Baroux L., Sommer H., Rudaz S., Wolfender J.-L. Food Chemistry, 2014, vol. 150, pp. 235–245. https://doi.org/10.1016/j.foodchem.2013.10.103.
Freitas A.M., Silva M., Cabrita M. Comprehensive Sampling and Sample Preparation. Elsevier, 2012, vol. 4, pp. 27–41. https://doi.org/10.1016/B978-0-12-381373-2.10126-7.
Weldegergis B.T., Crouch A.M., Górecki T., de Villiers A. Analytica Chimica Acta, 2011, vol. 701, no. 1, pp. 98–111. https://doi.org/10.1016/j.aca.2011.06.006.
Šuklje K., Carlin S., Stanstrup J., Antalick G., Blackman J.W., Meeks C., Deloire A., Schmidtke L.M., Vrhovsek U. Food Chemistry, 2019, vol. 277, no. 18, pp. 753–765. https://doi.org/10.1016/j.foodchem.2018.10.135.
Metafa M., Economou A. Journal of Chromatography A, 2013, vol. 1305, pp. 244–258. https://doi.org/10.1016/j.chroma.2013.07.005.
Gokbulut I., Karabulut I. Food Chemistry, 2012, vol. 132, no. 2, pp. 1098–1102. https://doi.org/10.1016/j.foodchem.2011.11.080.
Pico J., Gerbrandt E.M., Castellarin S.D. Food Chemistry, 2022, vol. 368, no. 1, article 130812. https://doi.org/10.1016/j.foodchem.2021.130812.
Stylos E., Chatziathanasiadou M.V., Syriopoulou A., Tzakos A.G. Journal of Chromatography B: Analytical Technol-ogies in the Biomedical and Life Sciences, 2017, vol. 1047, pp. 15–38. https://doi.org/10.1016/j.jchromb.2016.12.022.
Falleh H., Jemaa M.B., Saada M., Ksouri R. Food Chemistry, 2020, vol. 330, article 127268. https://doi.org/10.1016/j.foodchem.2020.127268.
Teneva D., Denkova Z., Denkova-Kostova R., Goranov B., Kostov G., Slavchev A., Hristova-Ivanova Y., Uzuno-va G., Degraeve P. Food Chemistry, 2021, vol. 344, article 128707. https://doi.org/10.1016/j.foodchem.2020.128707.
Sharma H., Mendiratta S.K., Agrawal R.K., Gurunathan K., Kumar S., Singh T.P. LWT, 2017, vol. 81, no. 1, pp. 118–127. https://doi.org/10.1016/j.lwt.2017.03.048.
Dai J., Li C., Cui H., Lin L. International Journal of Food Microbiology, 2021, vol. 338, no. 3, article 108989. https://doi.org/10.1016/j.ijfoodmicro.2020.108989.
Miri Y.B., Benabdallah A., Taoudiat A., Mahdid M., Djenane D., Tacer-Caba Z., Topkaya C., Simal-Gandara J. Food Control, 2023, vol. 145, no. 1-2, article 109474. https://doi.org/10.1016/j.foodcont.2022.109474.
Hassoun A., Çoban Ö.E. Trends in Food Science and Technology, 2017, vol. 68, pp. 26–36. https://doi.org/10.1016/j.tifs.2017.07.016.
Stojanović-Radić Z., Pejčić M., Joković N., Jokanović M., Ivić M., Šojić B., Škaljac S., Stojanović P., Mihajilov-Krstev T. Food Control, 2018, vol. 90, no. 4, pp. 332–343. https://doi.org/10.1016/j.foodcont.2018.03.013.
Yuan W., Teo C.H.M., Yuk H.-G. Food Control, 2019, vol. 96, pp. 112–118. https://doi.org/10.1016/j.foodcont.2018.09.005.
Baldin V.P., de Lima Scodro R.B., Fernandez C.M.M., Ieque A.L., Caleffi-Ferracioli K.R., Siqueira V.L.D., de Al-meida A.L., Gonçalves J.E., Cortez D.A.G., Cardoso R.F. Journal of Ethnopharmacology, 2019, vol. 244, no. 5, arti-cle 112095. https://doi.org/10.1016/j.jep.2019.112095.
Pagnossa J.P., Rocchetti G., de Abreu Martins H.H., Diogo J., Bezerra P., El-Saber Batiha G., El-Masry E.A., Coc-concelli P.S., Santos C., Lucini L., Piccoli R.H. Food Research International, 2021, vol. 149, no. 19, article 110658. https://doi.org/10.1016/j.foodres.2021.110658.
Horváth G., Farkas Á., Papp N., Bencsik T., Ács K., Gyergyák K., Kocsis B. Studies in Natural Products Chemistry. Elsevier, 2016, vol. 47, p. 63.
Tekhnicheskiy reglament Tamozhennogo soyuza TR TS 029/2012 «Trebovaniya bezopasnosti pishchevykh dobavok, aromatizatorov i tekhnologicheskikh vspomogatel'nykh sredstv» (s izmeneniyami na 18 sentyabrya 2014 goda). [Tech-nical Regulations of the Customs Union TR CU 029/2012 “Safety Requirements for Food Additives, Flavorings and Technological Aids” (as amended on September 18, 2014)]. URL: https://docs.cntd.ru/document/902359401?ysclid=ldmm5juqvi528452275. (in Russ.).
Sharifi-Rad M., Ozcelik B., Altın G., Daşkaya-Dikmen C., Martorell M., Ramírez-Alarcón K., Alarcón-Zapata P., Mo-rais-Braga M.F.B., Carneiro J.N.P., Leal A.L.A.B., Coutinho H.D.M., Gyawali R., Tahergorabi R., Ibrahim S.A., Sahrifi-Rad R., Sharopov F., Salehi B., del Mar Contreras M., Segura-Carretero A., Sen S., Acharya K., Sharifi-Rad J. Trends in Food Science and Technology, 2018, vol. 80, pp. 242–263. https://doi.org/10.1016/j.tifs.2018.08.008.
Eisenbrand G., Cohen S.M., Fukushima S., Gooderham N.J., Guengerich F.P., Hecht S.S., Rietjens I.M.C.M., Ro-sol T.J., Davidsen J.M., Harman C.L., Taylor S.V. Food and Chemical Toxicology, 2021, vol. 155, article 112357. https://doi.org/10.1016/j.fct.2021.112357.
Newberne P., Smith R.L., Doull J., Goodman J.I., Munro I.C., Portoghese P.S., Wagner B.M., Weil C.S., Woods L.A., Adams T.B., Lucas C.D., Ford R.A. Food and Chemical Toxicology, 1999, vol. 37, no. 7, pp. 789–811. https://doi.org/10.1016/s0278-6915(99)00037-x.
Felter S.P., Llewelyn C., Navarro L., Zhang X. Regulatory Toxicology and Pharmacology, 2020, vol. 115, arti-cle 104708. https://doi.org/10.1016/j.yrtph.2020.104708.
Tu X.-F., Hu F., Thakur K., Li X.-L., Zhang Y.-S., Wei Z.-J. Industrial Crops and Products, 2018, vol. 124, pp. 192–200. https://doi.org/10.1016/j.indcrop.2018.07.065.
Pereira L.P.L.A., Ribeiro E.Ca.G., Brito M.C.A., Silveira D.P.B., Araruna F.O.S., Araruna F.B., Leite J.A.C., Di-as A.A.S., da Cunha Araújo Firmo W., da Rocha Borges M.O., Borges A.C.R., Coutinho D.F. Acta Tropica, 2020, vol. 209, article 105489. https://doi.org/10.1016/j.actatropica.2020.105489.
Rocha D., Novo M., Matos O., Figueiredo A., Delgado M., Cabral M., Liberato M., Moiteiro C. Revista de Ciencias Agrarias, 2015, vol. 38, no. 2, pp. 155–165.
Nguyen Q.D., Vu M.N., Hebert A.A. J. Am. Acad. Dermatol., 2023, vol. 88, no. 1, pp. 123–130. https://doi.org/10.1016/j.jaad.2018.10.053.
Beier R.C., Byrd J.A. 2nd, Kubena L.F., Hume M.E., McReynolds J.L., Anderson R.C., Nisbet D.J. Poultry Science, 2014, vol. 93, no. 2, pp. 267–272. https://doi.org/10.3382/ps.2013-03254.
Zhao M., Li P., Zhou H., Hao L., Chen H., Zhou X. Chemical Engineering Journal, 2022, vol. 435, article 134861.
Sieniawska E., Świątek Ł., Wota M., Rajtar B., Polz-Dacewicz M. Food and Chemical Toxicology, 2019, vol. 129, pp. 115–124. https://doi.org/10.1016/j.fct.2019.04.038.
Hammoud Z., Abada M.B., Greige-Gerges H., Elaissari A., Jemâa J.M.B. J. Natural Pesticide Research, 2022, vol. 1, no. 7, article 100007. https://doi.org/10.1016/j.napere.2022.100007.
Pandit J., Aqil M., Sultana Y. Nanotechnology in the Agri-Food Industry, Encapsulations. Academic Press, 2016, pp. 597–640. https://doi.org/10.1016/B978-0-12-804307-3.00014-4.
Naseema A., Kovooru L., Behera A.K., Kumar K.P.P., Srivastava P. Advances in Colloid and Interface Science, 2020, vol. 287, article 102318. https://doi.org/10.1016/j.cis.2020.102318.
Naseema A. Plos one, 2022, vol. 17, no. 5, article e0267150. https://doi.org/10.1371/journal.pone.0267150.
Pavoni L., Pavela R., Cespi M., Bonacucina G., Maggi F., Zeni V., Canale A., Lucchi A., Bruschi F., Benelli G. Na-nomaterials, 2019, vol. 9, no. 9, article 1285. https://doi.org/10.3390/nano9091285.
El Asbahani A., Miladi K., Badri W., Sala M., Aït Addi E.H., Casabianca H., El Mousadik A., Hartmann D., Jilale A., Renaud F.N.R., Elaissari A. International Journal of Pharmaceutics, 2015, vol. 483, no. 1-2, pp. 220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069.
Doost A.S., Nasrabadi M.N., Kassozi V., Nakisozi H., der Meeren P.V. Trends in Food Science and Technology, 2020, vol. 99, pp. 474–486. https://doi.org/10.1016/j.tifs.2020.03.037.
Sharma S., Loach N., Gupta S., Mohan L. Environmental Nanotechnology, Monitoring and Management, 2020, vol. 14, no. 1, article 100331. https://doi.org/10.1016/j.enmm.2020.100331.
Lima L.A., Ferreira-Sá P.S., Garcia M.D.N. Jr., Pereira V.L.P., Carvalho J.C.T., Rocha L., Fernandes C.P., Sou-to R.N.P., Araújo R.S., Botas G., Cruz R.A.S. Industrial Crops and Products, 2021, vol. 162, article 113282. https://doi.org/10.1016/j.indcrop.2021.113282.
Adak T., Barik N., Patil N.B., Govindharaj G.-P.-P., Gadratagi B.G., Annamalai M., Mukherjee A.K., Rath P.C. In-dustrial Crops and Products, 2020, vol. 143, article 111849. https://doi.org/10.1016/j.indcrop.2019.111849.
Osanloo M., Sereshti H., Sedaghat M.M., Amani A. Environmental Science and Pollution Research, 2018, vol. 25, pp. 6466–6473. https://doi.org/10.1007/s11356-017-0822-4.
Sundararajan B., Moola A.K., Vivek K., Kumari B.D.R. Microbial Pathogenesis, 2018, vol. 125, no. 10, 475. https://doi.org/10.1016/j.micpath.2018.10.017.
Mohammadi R., Khoobdel M., Negahban M., Khani S. Asian Pacific Journal of Tropical Medicine, 2019, vol. 12, no. 11, pp. 520–527. https://doi.org/10.4103/1995-7645.271292.
Kaur N., Kocher D., Sidhu A. African Entomology, 2019, vol. 27, no. 2, pp. 433–438. https://doi.org/10.4001/003.027.0433.
Lima T.S., Silva M.F.S., Nunes X.P., Colombo A.V., Oliveira H.P., Goto P.L., Blanzat M., Piva H.L., Tedesco A.C., Siqueira-Moura M.P. Chemistry and Physics of Lipids, 2021, vol. 239, article 105113. https://doi.org/10.1016/j.chemphyslip.2021.105113.
Wang Y., Cen C., Chen J., Zhou C., Fu L. LWT, 2021, vol. 137, article 110361. https://doi.org/10.1016/j.lwt.2020.110361.
Sun Y., Zhang M., Bhandari B., Bai B. Food Control, 2021, vol. 127, article 108151. https://doi.org/10.1016/j.foodcont.2021.108151.
Liu Y., Liu R., Shi J., Zhang R., Tang H., Xie C., Wang F., Han J., Jiang L. Food Chem X, 2023, vol. 18, arti-cle 100714. https://doi.org/10.1016/j.fochx.2023.100714.
Gaidau C., Râpă M., Stanca M., Tanase M., Olariu L., Constantinescu R., Lazea-Stoyanova A., Alexe C., Tudor-ache M. Pharmaceutics, 2023, vol. 15, no. 12, article 2692. https://doi.org/10.3390/pharmaceutics15122692.
Hogenbom J., Istanbouli M., Faraone N. Molecules, 2021, vol. 26, no. 23, article 7391. https://doi.org/10.3390/molecules26237391.
Wu K., Zhang T., Chai X., Duan X., He D., Yu H., Liu X., Tao Z. Foods, 2023, vol. 12, no. 1, article 45. https://doi.org/10.3390/foods12010045.
Vilas V., Philip D., Mathew J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, vol. 132, pp. 743–750. https://doi.org/10.1016/j.saa.2014.05.046.
Thanighaiarassu R.R., Sivamai P., Devika R., Balwin N. Journal of Nanomedicine & Nanotechnology, 2014, vol. 5, no. 5, pp. 229–234.
Azizi S., Mohamad R., Rahim R.A., Moghaddam A.B., Moniri M., Ariff A., Saad W.Z., Namvab F. Applied Surface Science, 2016, vol. 384, pp. 517–524. https://doi.org/10.1016/j.apsusc.2016.05.052.
Ga’al H., Fouad H., Mao G., Tian J., Jianchu M. Artificial Cells, Nanomedicine, and Biotechnology, 2018, vol. 46, no. 6, pp. 1171–1179. https://doi.org/10.1080/21691401.2017.1365723.
Chaudhari A.K., Singh V.K., Das S., Dubey N.K. Food and Chemical Toxicology, 2021, vol. 149, article 112019. https://doi.org/10.1016/j.fct.2021.112019.
Rather A.H., Wani T.U., Khan R.S., Pant B., Park M., Sheikh F.A. International Journal of Molecular Sciences, 2021, vol. 22, no. 8, article 4017. https://doi.org/10.3390/ijms22084017.
Cota-Arriola O., Onofre Cortez-Rocha M., Burgos-Hernández A., Marina Ezquerra-Brauer J., Plascencia-Jatomea M. Journal of the Science of Food and Agriculture, 2013, vol. 93, no. 7, pp. 1525–1536. https://doi.org/10.1002/jsfa.6060.
Hadidi M., Pouramin S., Adinepour F., Haghani S., Mahdi Jafari S. Carbohydrate Polymers, 2020, vol. 236, arti-cle 116075. https://doi.org/10.1016/j.carbpol.2020.116075.
Dawaba A.M., Dawaba H.M. Recent Patents on Drug Delivery & Formulation, 2020, vol. 13, no. 3, pp. 228–240. https://doi.org/10.2174/1872211313666190516095309.
Hematizad I., Khanjari A., Basti A.A., Karabagias I.K., Noori N., Ghadami F., Gholami F., Teimourifard R. Food Packaging and Shelf Life, 2021, vol. 30, article 100751. https://doi.org/10.1016/j.fpsl.2021.100751.
Liu H., Bai Y., Huang C., Wang Y., Ji Y, Du Y., Xu L., Yu D.G., Bligh S.W.A. Biomolecules, 2023, vol. 13, no. 1, article 184. https://doi.org/10.3390/biom13010184.
Maliszewska I., Czapka T. Polymers, 2022, vol. 14, no. 9, article 1661. https://doi.org/10.3390/polym14091661.
Milanesi G., Vigani B., Rossi S., Sandri G., Mele E. Polymers, 2021, vol. 13, article 2582. https://doi.org/10.3390/polym13162582.
Lima P.S.S., Lucchese A.M., Araújo-Filho H.G., Menezes P.P., Araújo A.A.S., Quintans-Júnior L.J., Quintans J.S.S. Carbohydrate Polymers, 2016, vol. 151, no. 7, pp. 965–987. https://doi.org/10.1016/j.carbpol.2016.06.040.
Sarabia-Vallejo Á., del Mar Caja M., Olives A., Antonia Martín M., Menéndez J. Synthetic and Analytical Aspects Pharmaceutics, 2023, vol. 15, no. 9, article 2345. https://doi.org/10.3390/pharmaceutics15092345.
Amina S.J., Guo B. International Journal of Nanomedicine, 2020, vol. 15, pp. 9823–9857. https://doi.org/10.2147/ijn.s279094.
Adeyemi J., Oriola A., Onwudiwe D., Oyedeji A. Biomolecules, 2022, vol. 12, no. 5, article 627. https://doi.org/10.3390/biom12050627.
Bhardwaj K., Dhanjal D.S., Sharma A., Nepovimova E., Kalia A., Thakur S., Bhardwaj S., Chopra C., Singh R., Verma R., Kumar D., Bhardwaj P., Kuča K. International Journal of Molecular Sciences, 2020, vol. 21, no. 23, article 9028. https://doi.org/10.3390/ijms21239028.
Copyright (c) 2025 chemistry of plant raw material

This work is licensed under a Creative Commons Attribution 4.0 International License.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.







