PREPARATION OF NANOCRYSTALLINE CELLULOSE IN A BUTANOL ENVIRONMENT

UDC 661.728.7

  • Marina Igorevna Voronova G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences Email: miv@isc-ras.ru
  • Oleg Valentinovich Surov G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences Email: ovs@isc-ras.ru
Keywords: cellulose nanocrystals, isolation, hydrolysis in alcohol medium, yield, properties

Abstract

Nanocrystalline cellulose (NCC) was obtained from sulfate cellulose in the presence of a sulfuric acid catalyst in the environment of butanol isomers: butanol-1, butanol-2, isobutanol, and tert-butanol. It was found that under the given synthesis conditions (0.025 g/ml concentration of sulfate cellulose suspension, temperature of 50 °C, duration of 2 hours), the maximum NCC yield of 60% was achieved in butanol-1 at a sulfuric acid concentration of 55%. The physicochemical properties of the synthesized NCC were studied. The size and shape of NCC particles were determined, their surface charge, the degree of polymerization were evaluated, elemental and X-ray phase analysis were carried out, and IR spectra of NCC films were analyzed. It was revealed that the properties of NCC obtained in an alcoholic medium are similar to the properties of NCC obtained by sulfuric acid hydrolysis in water, with the exception of an increased content of surface sulfate groups.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Marina Igorevna Voronova , G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Senior Researcher

Oleg Valentinovich Surov, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Senior Researcher

References

Habibi Y., Lucia L., Rojas O. Chem. Rev., 2010, vol. 110, no. 6, 3479. https://doi.org/10.1021/cr900339w.

Klemm D., Kramer F., Moritz S., Lindstrm T., Ankerfors M., Gray D., Dorris A. Angew. Chem. Int. Ed., 2011, vol. 50, pp. 5438–5466. https://doi.org/10.1002/anie.201001273.

Kose O., Tran A., Lewis L., Hamad W.Y., MacLachlan M.J. Nature Communications, 2019, vol. 10, pp. 510–518. https://doi.org/10.1038/s41467-019-08351-6.

Andrew L.J., Walters C.M, Hamad W.Y., MacLachlan M.J. Biomacromolecules, 2023, vol. 24, pp. 896–908. https://doi.org/10.1021/acs.biomac.2c01325.

Frka-Petesic B., Parton T.G., Honorato-Rios C., Narkevicius A., Ballu K., Shen Q., Lu Z., Ogawa Y., Haataja J.S., Droguet B.E., Parker R.M., Vignolini S. Chem. Rev., 2023, vol. 123, pp. 12595–12756. https://doi.org/10.1021/acs.chemrev.2c00836.

Giese M., Blusch L.K., Khan M.K., MacLachlan M.J. Angew. Chem. Int. Ed., 2015, vol. 54, pp. 2888–2910. https://doi.org/10.1002/anie.201407141.

Kargarzadeh H., Ioelovich M., Ahmad I., Thomas S., Dufresne A. Handbook of Nanocellulose and Cellulose Nano-composites. Wiley-VCH Verlag GmbH & Co. KGaA, 2017, pp. 1–49. https://doi.org/10.1002/9783527689972.ch1.

Foster E.J., Moon R.J., Agarwal U.P. et al. Chem. Soc. Rev., 2018, vol. 47, pp. 2609–2679. https://doi.org/10.1039/c6cs00895j.

Haldar D., Purkait M.K. Carbohydrate Polymers, 2020, vol. 250, 116937. https://doi.org/10.1016/j.carbpol.2020.116937.

Bondeson D., Mathew A., Oksman K. Cellulose, 2006, vol. 13, pp. 171–180. https://doi.org/10.1007/s10570-006-9061-4.

Wang H., Du Q., Liu Y., Cheng S. Cellulose, 2023, vol. 30, pp. 6273–6287. https://doi.org/10.1007/s10570-023-05260-2.

Pradhan D., Jaiswal A.K., Jaiswal S. Carbohydrate Polymers, 2022, vol. 285, 119258. https://doi.org/10.1016/j.carbpol.2022.119258.

Wang Y., Liu H., Wang Q., An X., Ji X., Tian Z., Liu S., Yang G. Journal of Biological Macromolecules, 2023, vol. 253, 127353. https://doi.org/10.1016/j.ijbiomac.2023.127353.

Yamada T., Yamaguchi M., Kubo S., Hishikawa Y. BioResources, 2015, vol. 10, no. 3, pp. 4961–4969. https://doi.org/10.15376/biores.10.3.4961-4969.

Zhu S., Guo J., Wang X., Wang J., Fan W. Chem. Sus. Chem, 2017, vol. 10, no. 12, pp. 2547–2559. https://doi.org/10.1002/cssc.201700597.

Rogovin Z.A. Khimiya tsellyulozy. [Chemistry of cellulose]. Moscow, 1972, 520 p. (in Russ.).

Bouchard J., Lacelle S., Chornet E., Vidal P.P, Overend R.R. Holzforschung, 1993, vol. 47, no. 4, pp. 291–296. https://doi.org/10.1515/hfsg.1993.47.4.291.

Badgujar K.C., Badgujar V.C., Bhanage B.M. Catal. Today, 2023, vol. 408, pp. 9–21. https://doi.org/10.1016/j.cattod.2022.10.008.

Deng W., Liu M., Zhang Q., Wang Y. Catal. Today, 2011, vol. 164, no. 1, pp. 461–466. https://doi.org/10.1016/j.cattod.2010.10.055.

Torlopov M.A., Mikhaylov V.I., Udoratina E.V., Aleshina L.A., Prusskii A.I., Tsvetkov N.V., Krivoshapkin P.V. Cellulose, 2018, vol. 25, pp. 1031–1046. https://doi.org/10.1007/s10570-017-1624-z.

Torlopov M.A., Martakov I.S., Mikhaylov V.I., Krivoshapkin P.V., Tsvetkov N.V., Sitnikov P.A., Udoratina E.V. Carbohydr. Polym., 2018, vol. 200, pp. 162–172. https://doi.org/10.1016/j.carbpol.2018.08.002.

Li Y., Liu Y., Chen W., Wang Q., Liu Y., Li J., Yu H. Green Chem., 2016, vol. 18, pp. 1010–1018. https://doi.org/10.1039/C5GC02576A.

de Oliveira F.B., Bras J., Pimenta M.T.B., da Silva Curvelo A.A., Belgacem M.N. Ind. Crop. Prod., 2016, vol. 93, pp. 48–57. https://doi.org/10.1016/j.indcrop.2016.04.064.

Hernández J., Romero V., Escalante A., Toriz G., Rojas O., Sulbarán B. BioRes., 2018, vol. 13, no. 2, pp. 3603–3614. https://doi.org/10.15376/biores.13.2.3603-3614.

Barbash V.A., Yaschenko O.V., Shniruk O.M. Nanoscale Res. Lett., 2017, vol. 12, pp. 1–8. https://doi.org/10.1186/s11671-017-2001-4.

Zhang R., Liu Y. Sci. Rep., 2018, vol. 8, 16505. https://doi.org/10.1038/s41598-018-34667-2.

Surov O.V., Afineevskii A.V., Voronova M.I. Cellulose, 2023, vol. 30, pp. 9391–9404. https://doi.org/10.1007/s10570-023-05470-8.

Lee M., Heo M., Lee H., Shin J. Materials, 2021, vol. 14, no. 21, 6463. https://doi.org/10.3390/ma14216463.

Beck S., Bouchard J., Berry R. Biomacromolecules, 2012, vol. 13, no. 5, pp. 1486–1494. https://doi.org/10.1021/bm300191k.

Segal L., Creely J.J., Martin A.E., Conrad C.M. Text. Res. J., 1959, vol. 29, no. 10, pp. 786–794. https://doi.org/10.1177/004051755902901003.

Analiticheskiy kontrol' proizvodstva iskusstvennykh volokon: spravochnoye posobiye [Analytical control of production of artificial fibers: reference manual], ed. A.K. Dibrov, V.S. Matveyev. Moscow, 1986, 336 p. (in Russ.).

Chen L., Wang Q., Hirth K., Baez C., Agarwal U.P., Zhu J.Y. Cellulose, 2015, vol. 22, pp. 1753–1762. https://doi.org/10.1007/s10570-015-0615-1.

Kontturi E., Meriluoto A., Penttilä P.A., Baccile N., Malho J.-M., Potthast A., Rosenau T., Ruokolainen J., Serimaa R., Laine J., Sixta H. Angew. Chem. Int. Ed., 2016, vol. 55, pp. 14455–14458. https://doi.org/10.1002/anie.201606626.

Lorenz M., Sattler S., Reza M., Bismarck A., Kontturi E. Faraday Discuss, 2017, vol. 202, pp. 315–330. https://doi.org/10.1039/C7FD00053G.

Kazansky V.B., Figueras F., de Menorval L.C. Catalysis Letters, 1994, vol. 29, pp. 311–323. https://doi.org/10.1007/BF00807110.

Démolis A., Eternot M., Essayem N., Rataboul F. New J. Chem., 2016, vol. 40, pp. 3747–3754. https://doi.org/10.1039/C5NJ02493E.

Loerbroks C., Rinaldi R., Thiel W. Chem. Eur. J., 2013, vol. 19, pp. 16282–16294. https://doi.org/10.1002/chem.201301366.

Loerbroks C., Boulanger E., Thiel W. Chem. Eur. J., 2015, vol. 21, pp. 5477–5487. https://doi.org/10.1002/chem.201405507.

Loerbroks C., Heimermann A., Thiel W. J. Comput. Chem., 2015, vol. 36, pp. 1114–1123. https://doi.org/10.1002/jcc.23898.

Wang C., Ying F., Wu W., Mo Y. J. Org. Chem., 2014, vol. 79, pp. 1571−1581. https://doi.org/10.1021/jo402306e.

Praly J.-P., Lemieux R.U. Can. I. Chem., 1987, vol. 65, pp. 213–223. https://doi.org/10.1139/v87-034.

Published
2025-06-02
How to Cite
1. Voronova M. I., Surov O. V. PREPARATION OF NANOCRYSTALLINE CELLULOSE IN A BUTANOL ENVIRONMENT // Chemistry of plant raw material, 2025. № 2. P. 111-122. URL: https://journal.asu.ru/cw/article/view/14815.
Section
Biopolymers of plants