COMPARATIVE CHARACTERISTICS OF THE COMPOSITION OF WOODY PLANT LADY WHEN OVERGROWING FALLOW LANDS

UDC 630*160.2:581.5

Keywords: plant litter, fractional composition, Acer negundo L., Betula pendula Roth, Padus avium Mill., phytomass, nitrogen, phosphorus, tannins, deposits

Abstract

The article analyzes the results of the chemical composition of litter of woody plants growing on the territory of abandoned garden plots within the urban environment of Kemerovo. The object of research was plant litter collected under the canopy of woody plants. The vegetation cover was described, the dominant plant species and their general projective cover were determined. A comparative description of the composition of woody plant litter during the overgrowing of fallow lands revealed a dependence on the species and chemical composition. The reserve of phytomass, the level of nitrogen, phosphorus and polyphenolic compounds (tannins) in the litter of tree species were determined. The amount of phytomass at the sites varied from 3.1 to 5.1 t/ha of air-dry mass. Under the canopy of the trees under study, during the growing season, the leaf fraction predominated, the proportion of which was 72–94%. Among the indicators of the chemical composition of plant litter, the most pronounced difference was in the content of polyphenolic compounds; the content of nitrogen and phosphorus varied to a lesser extent. Acer negundo litter had the most intense mineralization, due to higher accumulation of phytomass, nitrogen and phosphorus, but low tannin content in comparison with trees of other species. The studied woody plants can be arranged according to the decrease in the content of phytomass, nitrogen and phosphorus in the following order: ash maple ˃ bird cherry ˃ silver birch. Experimental details can be used for biomonitoring of natural communities.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Oksana Leonidovna Tsandekova , Federal Research Center for Coal and Coal Chemistry SB RAS

Senior Researcher

References

Moskalenko S.V., Bobrovskiy M.I. Izvestiya Samarskogo nauchnogo tsentra RAN, 2012, vol. 14, no. 1(5), pp. 1332–1335. (in Russ.).

Nguyen D., Tishkov A.A. Izvestiya Rossiyskoy akademii nauk. Seriya geograficheskaya, 2021, vol. 85, no. 1, pp. 59–69. https://doi.org/10.31857/S2587556621010088. (in Russ.).

Ding B., Cai X., Wang Y., Li H., Zhao X., Xiao M., Li J., Yu Q., Zhao Y. Ecological Indicators, 2023, vol. 156, arti-cle 111166. https://doi.org/10.1016/j.ecolind.2023.111166.

Grodzinskiy A.M. Allelopatiya v zhizni rasteniy i ikh soobshchestv: Osnovy khimicheskogo vzaimodeystviya ras-teniy. [Allelopathy in the life of plants and their communities: Fundamentals of chemical interaction of plants]. Kyiv, 1965, 198 p. (in Russ.).

Ovcharenko A.A., Kuz'michev A.M. Vestnik Tambovskogo gosudarstvennogo universiteta, 2013, vol. 18, no. 3, pp. 822–825. (in Russ.).

Lucas-Borja M.E., Hedo de Santiago J., Yang Y., Shen Y., Candel-Pérez D. Science of The Total Environment, 2019, vol. 650, pp. 749–758. https://doi.org/10.1016/j.scitotenv.2018.09.079.

Tashe N.C., Schmidt M.G. Forest Ecology and Management, 2001, vol. 147, no. 2-3, pp. 263–279. https://doi.org/10.1016/S0378-1127(00)00468-0.

Vourlitis G.L., Pinto O.B., Dalmagro H.J., Zanella P.E., Lobo F.A. Trees, Forests and People, 2023, vol. 12, arti-cle 100383. https://doi.org/10.1016/j.tfp.2023.100383.

Gong H., Niu Y., Niklas K.J., Huang H., Deng J., Wang Z. Science of The Total Environment, 2024, vol. 908, arti-cle 168327. https://doi.org/10.1016/j.scitotenv.2023.168327.

Huang X., Lu Z., Xu X., Wan F., Liao J., Wang J. Science of The Total Environment., 2023, vol. 871, article 162075. https://doi.org/10.1016/j.scitotenv.2023.162075.

Polyakova O., Billor N. Forest Ecology and Management, 2007, vol. 253, no. 1-3, pp. 11–18. https://doi.org/10.1016/j.foreco.2007.06.049.

Vesterdal L., Schmidt I.K., Callesen I., Nilsson L.O., Gundersen P. Forest Ecology and Management, 2008, vol. 255, no. 1, pp. 35–48. https://doi.org/10.1016/j.foreco.2007.08.015.

Han W., Fang J., Guo D., Zhang Y. New Phytologist, 2005, vol. 168, no. 2, pp. 377–385. https://doi.org/10.1111/j.1469-8137.2005.01530.x.

Walela Ch., Daniel H., Wilson В., Lockwood Р., Cowie А., Harden S. Soil Biology and Biochemistry, 2014, vol. 77, pp. 268–275. https://doi.org/10.1016/j.soilbio.2014.06.013.

Husmann K., Rumpf S., Nagel J. Journal of Cleaner Production, 2018, vol. 172, pp. 4044−4056. https://doi.org/10.1016/j.jclepro.2017.03.019.

Ainalis A.B., Tsiouvaras C.N., Nastis A.S. Journal of Arid Environments, 2006, vol. 67, no. 1, pp. 90–99. https://doi.org/10.1016/j.jaridenv.2006.01.017.

Mineyev V.G., Sychev V.G., Amel'yanchik O.A., Bolysheva T.N., Gomonova N.F., Durynina Ye.P., Yegorov B.S., Yegorova Ye.V., Yedemskaya N.L., Karpova Ye.A., Prizhukova V.G. Praktikum po agrokhimii. [Workshop on agro-chemistry]. Moscow, 2001, 689 p. (in Russ.).

Korenskaya I.M., Ivanovskaya N.P., Izmalkova I.Ye. Lekarstvennyye rasteniya i lekarstvennoye rastitel'noye syr'ye, soderzhashchiye antratsenproizvodnyye, prostyye fenoly, lignany, dubil'nyye veshchestva. [Medicinal plants and medic-inal plant raw materials containing anthracene derivatives, simple phenols, lignans, tannins]. Voronezh, 2007, pp. 50–51. (in Russ.).

Xie Yo., Yu D., Ren B. Aquatic Botany, 2004, vol. 80, pp. 29–37. https://doi.org/10.1016/j.aquabot.2004.07.002.

Piatek K.B., Munasinghe P., Peterjohn W.T., Adams M.B., Cumming J.R. Northern Journal Applied Forestry, 2010, vol. 27, pp. 97–104. https://doi.org/10.1093/njaf/27.3.97.

Published
2025-06-05
How to Cite
1. Tsandekova O. L. COMPARATIVE CHARACTERISTICS OF THE COMPOSITION OF WOODY PLANT LADY WHEN OVERGROWING FALLOW LANDS // Chemistry of plant raw material, 2025. № 2. P. 245-252. URL: https://journal.asu.ru/cw/article/view/15088.
Section
Low-molecular weight compounds