INFLUENCE OF THE NATURE OF THE CROSS-LINKING AGENT ON THE STRUCTURE AND PROPERTIES OF ORGANIC XEROGELS OBTAINED FROM TANNINS OF CEDAR BARK

UDC 547.9:630.86

  • Nadezhda Mikhailovna Mikova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS" Email: nm@icct.ru
  • Ivan Petrovich Ivanov Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS" Email: ivanov@icct.ru
  • Anatoly Mikhailovich Zhizhaev Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS" Email: zhyzhaev@icct.ru
  • Olga Yurievna Fetisova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS" Email: nm@icct.ru
  • Valentina Sergeevna Borovkova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS" Email: nm@icct.ru
  • Boris Nikolayevich Kuznecov Institute of Chemistry and Chemical Technology SB RAS Email: inm@icct.ru
Keywords: tannins, organic gel, porosity, morphology, sorption properties, thermal stability

Abstract

It was suggested for the first time to use tannins isolated from the bark of the Siberian cedar (Pinus sibirica) for synthesis of organic xerogels. The influence of the nature of the cross-linking agent on the characteristics of xerogels prepared by sol-gel by condensation of cedar tannins with formaldehyde, furfuryl alcohol or glutaraldehyde was studied. IR study shows an increase in the number of methylene -CH2- and methylene ether -CH2-O-CH2 bonds during the formation of xerogels. The use of furfuryl alcohol leads to an increase in the density of the tannin-furfuryl gel (T/FA) xerogel (0.348 g/cm3) compared to the low density of tannin-formaldehyde (T/F) and tannin-glutar (T/G) xerogels – 0.063 and 0.071 g/cm3. BET study indicates the microporous nature of T/FA xerogel, where the proportion of micropores with an average pore size of 1.42 nm reaches 70.75%. Xerogels prepared using formaldehyde and glutaral have a meso/macroporous structure with a mesopore width of about 25–75 nm and small contribution of micropores – 8.61 and 11.27%, respectively. The SEM method revealed the formation of a branched structure of interconnected spherical particles about 3 µm in size in tannin-formaldehyde and agglomerated particles (3-8 µm) in tannin-glutar xerogels. Tannin-furfuryl gel is similar in structure and morphology to cellular foam with cavities about 10 mm in size. Using the DTA method, it was established that initial temperature of thermal composition of the T/F gel is 216 °C, T/G gel is 272 °C and T/FA is 282 °C. It was found that tannin-formaldehyde xerogel has better efficiency compared to another gels in removing methylene blue from water solution (107 mg/g).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Nadezhda Mikhailovna Mikova , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"

Candidate of Chemical Sciences, senior researcher

Ivan Petrovich Ivanov , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"

Candidate of Technical Sciences, senior researcher

Anatoly Mikhailovich Zhizhaev , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"

Candidate of Chemical Sciences, leading researcher

Olga Yurievna Fetisova , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"

Candidate of Chemical Sciences, researcher

Valentina Sergeevna Borovkova , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"

junior researcher

Boris Nikolayevich Kuznecov, Institute of Chemistry and Chemical Technology SB RAS

Заместитель директора ИХХТ СО РАН, доктор хим. наук, профессор, заслуженный деятель науки РФ

References

Zhao Sh., Malfait W.J., Guerrero-Alburquerque N., Koebel M.M., Nystrom G. Angew. Chem. Int. Ed., 2018, vol. 57, pp. 7580–7608. DOI: 10.1002/ange.201709014.

Pizzi A.A. JRM, 2019, vol. 7(5), pp. 477–492. DOI: 10.32604/jrm.2019.06511.

Arenillas A., Menéndez J.A., Reichenauer G., Celzard A., Fierro V., Maldonado Hodar F.J., Bailόn-Garcia E., Job N. Organic and Carbon Gels. Advances in Sol-Gel Derived Materials and Technologies. Springer: Cham. 2019, 195 p. DOI: 10.1007/978-3-030-13897-4_1.

Mulik S., Sotiriou-Leventis C. Resorcinol-formaldehyde aerogels, in Aerogels Handbook. Springer: New York, 2011, 932 p.

Amaral-Labat G., Szczurek A., Fierro V., Pizzi A., Celzard A. Sci. Technol. Adv. Mater., 2013, vol. 14, 015001. DOI: 10.1088/1468-6996/14/1/015001.

Amaral-Labat G., Grishechko L.I., Fierro V., Kuznetsov B.N., Pizzi A., Celzard A. Biomass Bioenergy, 2013, vol. 56, pp. 437–445. DOI: 10.1016/j.biombioe.2013.06.001.

Szczurek A., Fierro V., Pizzi A., Stauber M., Celzard A. Ind. Crop. Prod., 2014, vol. 54, pp. 40–53. DOI: 10.1016/j.indcrop.2014.01.012.

Mikova N.M., Levdanskiy V.А., Skwortsova G.P., Zhizhaev А.М., Lutoshkin M.A., Chesnokov N.V., Kuz-netsov B.N. Biomass Conv. Bioref., 2021, vol. 11, pp. 1565–1573. DOI: 10.1007/s13399-019-00561-8.

Levdanskiy V.A., Levdanskiy A.V., Kuznetsov B.N. Khimiya rastitel'nogo syr'ya, 2022, no. 4, pp. 101–107. DOI: 10.14258/jcprm.20220411490. (in Russ.).

Prostredný M., Abduljalil M.G.M., Mulheran P.A., Fletcher A. Gels, 2018, vol. 4(2), pp. 36–50. DOI: 10.3390/gels4020036.

Garcia B.B., Liu D., Sepehri S., Candelaria S., Beckham D.M., Savage L.W., Cao G. J. Non-Cryst. Solids, 2010, vol. 356, pp. 1620–1625. DOI: 10.1016/j.jnoncrysol.2010.06.033.

Lee Y., Yoon J.S., Suh D.J., Chang-Ha-Lee, Suh Y.W. Mater. Chem. Phys., 2012, vol. 136, pp. 837–844. DOI: 10.1016/j.matchemphys.2012.08.006.

Li X., Pizzi A., Zhou X., Fierro V., Celzard A. J. Renewable Mater., 2015, vol. 3, pp. 142–150. DOI: 10.7569/JRM.2014.634117.

Lacoste C., Basso M.C., Pizzi A., Laborie M.-P., Celzard A., Fierro V. Ind. Crop. Prod., 2013, vol. 43, pp. 245–250. DOI: 10.1016/j.indcrop.2012.07.039.

Lacoste C., Basso M.C., Pizzi A., Laborie M.P., Garcia D., Celzard A. Ind. Crop. Prod., 2013, vol. 45, pp. 401–405. DOI: 10.1016/j.indcrop.2012.12.032.

Calvo E.G., Menéndez J.A., Arenillas A. J. Non-Cryst. Solids, 2016, vol. 452, pp. 286–290. DOI: 10.1016/j.jnoncrysol.2016.09.009.

Rey-Raap N., Szczurek A., Fierro V., Celzard A., Menéndez A.J., Arenillas A. Ind. Crop. Prod., 2016, vol. 82, pp. 100–106. DOI: 10.1016/j.indcrop.2015.12.001.

Kraiwattanawong K., Sano N., Tamon H. Polymers, 2021, vol. 13(16), 2631. DOI: 10.3390/polym13162631.

Mikova N.M., Zhyzhaev A.M., Ivanov I.P., Levdanskiy V.A., Taran O.P., Kuznetsov B.N. J. Sib. Fed. Univ. Chem., 2023, vol. 16(3), pp. 369–382.

Sánchez-Martín J., Beltrán-Heredia J., Gibello-Pérez P. Chem. Eng. J., 2011, vol. 168(3), pp. 1241–1247. DOI: 10.1016/j.cej.2011.02.022.

Cadahía E., Conde M.C., García-Vallejo B., Simón F. Environ. Sci. Chem. Chromatogr., 1996, vol. 42(1/2), pp. 95–100. DOI: 110.1007/BF02271062.

Bo Teng, Tao Zhang, Ying Gong, Wuyong Chen. Environ. Sci. Mater. Sci., 2013, vol. 8(47), pp. 5996–6001. DOI: 10.5897/AJAR11.1911.

Williams V.M., Porter L.J., Hemingway R.W. Phytochemistry, 1983, vol. 22, pp. 569–572. DOI: 10.1016/0031-9422%2883%2983048-9.

Mikova N.M., Ivanov I.P., Fetisova O.Yu., Kazachenko A.S., Kuznetsov B.N. Bioresour. Technol. Rep., 2023, vol. 22, 101454. DOI: 10.1016/j.biteb.2023.101454.

Pandey K.K. J. Appl. Polym. Sci., 1999, vol. 71(12), pp. 1969–1975. DOI: 10.1002/(SICI)1097-4628(19990321)71:12%3C1969::AID-PP6%3E3.0.CO;2-D.

Chen H., Ferrari C., Angiuli M., Yao J., Raspi C., Bramanti E. Carbohydr. Polym., 2010, vol. 82(3), pp. 772–778. DOI: 10.1016/j.carbpol.2010.05.052.

Szczurek A., Amaral-Labat G., Fierro V., Pizzi A., Celzard A. Carbon, 2011, vol. 49, pp. 2785–2794. DOI: 10.1016/j.carbon.2011.03.005.

Bertarione S., Bonino F., Cesano F., Damin A., Scarano D., Zecchina A. J. Phys. Chem. B, 2008, vol. 112 (9), pp. 2580–2589. DOI: 10.1021/jp073958q.

Szczurek A., Fierro V., Thébault M., Pizzi A., Celzard A. Eur. Polym. J., 2016, vol. 78, pp. 195–212. DOI: 10.1016/j.eurpolymj.2016.03.037.

Gregg S.J., Sing K.S.W. Adsorption, surface area and porosity. Academic Press: London, UK, 1982, 310 p. DOI: 10.1149/1.2426447.

Loskutov S.R., Shapchenkova O.A., Aniskina A.A. Sibirskiy lesnoy zhurnal, 2015, no. 6, pp. 17–30. DOI: 10.15372/SJFS20150602. (in Russ.).

Kan T., Strezov V., Evans T.J. Renewable and Sustainable Energy Reviews, 2016, vol. 57, pp. 1126–1140. DOI: 10.1016/j.rser.2015.12.185.

Biswas S., Pal A. Carbohydr. Polym. Technologies and Applications, 2021, vol. 2, 100145. DOI: 10.1016/j.carpta.2021.100145.

Sánchez-Martín J., Beltrán-Heredia J., Delgado-Regaña A., Rodríguez-González M.A., Rubio-Alonso F. Chem. Eng. J., 2013, vol. 228, pp. 575–582. DOI: 10.1016/j.cej.2013.05.009.

Published
2024-09-18
How to Cite
1. Mikova N. M., Ivanov I. P., Zhizhaev A. M., Fetisova O. Y., Borovkova V. S., Kuznecov B. N. INFLUENCE OF THE NATURE OF THE CROSS-LINKING AGENT ON THE STRUCTURE AND PROPERTIES OF ORGANIC XEROGELS OBTAINED FROM TANNINS OF CEDAR BARK // Chemistry of plant raw material, 2024. № 3. P. 91-101. URL: https://journal.asu.ru/cw/article/view/15111.
Section
Biopolymers of plants