INFLUENCE OF THE NATURE OF THE CROSS-LINKING AGENT ON THE STRUCTURE AND PROPERTIES OF ORGANIC XEROGELS OBTAINED FROM TANNINS OF CEDAR BARK
UDC 547.9:630.86
Abstract
It was suggested for the first time to use tannins isolated from the bark of the Siberian cedar (Pinus sibirica) for synthesis of organic xerogels. The influence of the nature of the cross-linking agent on the characteristics of xerogels prepared by sol-gel by condensation of cedar tannins with formaldehyde, furfuryl alcohol or glutaraldehyde was studied. IR study shows an increase in the number of methylene -CH2- and methylene ether -CH2-O-CH2 bonds during the formation of xerogels. The use of furfuryl alcohol leads to an increase in the density of the tannin-furfuryl gel (T/FA) xerogel (0.348 g/cm3) compared to the low density of tannin-formaldehyde (T/F) and tannin-glutar (T/G) xerogels – 0.063 and 0.071 g/cm3. BET study indicates the microporous nature of T/FA xerogel, where the proportion of micropores with an average pore size of 1.42 nm reaches 70.75%. Xerogels prepared using formaldehyde and glutaral have a meso/macroporous structure with a mesopore width of about 25–75 nm and small contribution of micropores – 8.61 and 11.27%, respectively. The SEM method revealed the formation of a branched structure of interconnected spherical particles about 3 µm in size in tannin-formaldehyde and agglomerated particles (3-8 µm) in tannin-glutar xerogels. Tannin-furfuryl gel is similar in structure and morphology to cellular foam with cavities about 10 mm in size. Using the DTA method, it was established that initial temperature of thermal composition of the T/F gel is 216 °C, T/G gel is 272 °C and T/FA is 282 °C. It was found that tannin-formaldehyde xerogel has better efficiency compared to another gels in removing methylene blue from water solution (107 mg/g).
Downloads
Metrics
References
Zhao Sh., Malfait W.J., Guerrero-Alburquerque N., Koebel M.M., Nystrom G. Angew. Chem. Int. Ed., 2018, vol. 57, pp. 7580–7608. DOI: 10.1002/ange.201709014.
Pizzi A.A. JRM, 2019, vol. 7(5), pp. 477–492. DOI: 10.32604/jrm.2019.06511.
Arenillas A., Menéndez J.A., Reichenauer G., Celzard A., Fierro V., Maldonado Hodar F.J., Bailόn-Garcia E., Job N. Organic and Carbon Gels. Advances in Sol-Gel Derived Materials and Technologies. Springer: Cham. 2019, 195 p. DOI: 10.1007/978-3-030-13897-4_1.
Mulik S., Sotiriou-Leventis C. Resorcinol-formaldehyde aerogels, in Aerogels Handbook. Springer: New York, 2011, 932 p.
Amaral-Labat G., Szczurek A., Fierro V., Pizzi A., Celzard A. Sci. Technol. Adv. Mater., 2013, vol. 14, 015001. DOI: 10.1088/1468-6996/14/1/015001.
Amaral-Labat G., Grishechko L.I., Fierro V., Kuznetsov B.N., Pizzi A., Celzard A. Biomass Bioenergy, 2013, vol. 56, pp. 437–445. DOI: 10.1016/j.biombioe.2013.06.001.
Szczurek A., Fierro V., Pizzi A., Stauber M., Celzard A. Ind. Crop. Prod., 2014, vol. 54, pp. 40–53. DOI: 10.1016/j.indcrop.2014.01.012.
Mikova N.M., Levdanskiy V.А., Skwortsova G.P., Zhizhaev А.М., Lutoshkin M.A., Chesnokov N.V., Kuz-netsov B.N. Biomass Conv. Bioref., 2021, vol. 11, pp. 1565–1573. DOI: 10.1007/s13399-019-00561-8.
Levdanskiy V.A., Levdanskiy A.V., Kuznetsov B.N. Khimiya rastitel'nogo syr'ya, 2022, no. 4, pp. 101–107. DOI: 10.14258/jcprm.20220411490. (in Russ.).
Prostredný M., Abduljalil M.G.M., Mulheran P.A., Fletcher A. Gels, 2018, vol. 4(2), pp. 36–50. DOI: 10.3390/gels4020036.
Garcia B.B., Liu D., Sepehri S., Candelaria S., Beckham D.M., Savage L.W., Cao G. J. Non-Cryst. Solids, 2010, vol. 356, pp. 1620–1625. DOI: 10.1016/j.jnoncrysol.2010.06.033.
Lee Y., Yoon J.S., Suh D.J., Chang-Ha-Lee, Suh Y.W. Mater. Chem. Phys., 2012, vol. 136, pp. 837–844. DOI: 10.1016/j.matchemphys.2012.08.006.
Li X., Pizzi A., Zhou X., Fierro V., Celzard A. J. Renewable Mater., 2015, vol. 3, pp. 142–150. DOI: 10.7569/JRM.2014.634117.
Lacoste C., Basso M.C., Pizzi A., Laborie M.-P., Celzard A., Fierro V. Ind. Crop. Prod., 2013, vol. 43, pp. 245–250. DOI: 10.1016/j.indcrop.2012.07.039.
Lacoste C., Basso M.C., Pizzi A., Laborie M.P., Garcia D., Celzard A. Ind. Crop. Prod., 2013, vol. 45, pp. 401–405. DOI: 10.1016/j.indcrop.2012.12.032.
Calvo E.G., Menéndez J.A., Arenillas A. J. Non-Cryst. Solids, 2016, vol. 452, pp. 286–290. DOI: 10.1016/j.jnoncrysol.2016.09.009.
Rey-Raap N., Szczurek A., Fierro V., Celzard A., Menéndez A.J., Arenillas A. Ind. Crop. Prod., 2016, vol. 82, pp. 100–106. DOI: 10.1016/j.indcrop.2015.12.001.
Kraiwattanawong K., Sano N., Tamon H. Polymers, 2021, vol. 13(16), 2631. DOI: 10.3390/polym13162631.
Mikova N.M., Zhyzhaev A.M., Ivanov I.P., Levdanskiy V.A., Taran O.P., Kuznetsov B.N. J. Sib. Fed. Univ. Chem., 2023, vol. 16(3), pp. 369–382.
Sánchez-Martín J., Beltrán-Heredia J., Gibello-Pérez P. Chem. Eng. J., 2011, vol. 168(3), pp. 1241–1247. DOI: 10.1016/j.cej.2011.02.022.
Cadahía E., Conde M.C., García-Vallejo B., Simón F. Environ. Sci. Chem. Chromatogr., 1996, vol. 42(1/2), pp. 95–100. DOI: 110.1007/BF02271062.
Bo Teng, Tao Zhang, Ying Gong, Wuyong Chen. Environ. Sci. Mater. Sci., 2013, vol. 8(47), pp. 5996–6001. DOI: 10.5897/AJAR11.1911.
Williams V.M., Porter L.J., Hemingway R.W. Phytochemistry, 1983, vol. 22, pp. 569–572. DOI: 10.1016/0031-9422%2883%2983048-9.
Mikova N.M., Ivanov I.P., Fetisova O.Yu., Kazachenko A.S., Kuznetsov B.N. Bioresour. Technol. Rep., 2023, vol. 22, 101454. DOI: 10.1016/j.biteb.2023.101454.
Pandey K.K. J. Appl. Polym. Sci., 1999, vol. 71(12), pp. 1969–1975. DOI: 10.1002/(SICI)1097-4628(19990321)71:12%3C1969::AID-PP6%3E3.0.CO;2-D.
Chen H., Ferrari C., Angiuli M., Yao J., Raspi C., Bramanti E. Carbohydr. Polym., 2010, vol. 82(3), pp. 772–778. DOI: 10.1016/j.carbpol.2010.05.052.
Szczurek A., Amaral-Labat G., Fierro V., Pizzi A., Celzard A. Carbon, 2011, vol. 49, pp. 2785–2794. DOI: 10.1016/j.carbon.2011.03.005.
Bertarione S., Bonino F., Cesano F., Damin A., Scarano D., Zecchina A. J. Phys. Chem. B, 2008, vol. 112 (9), pp. 2580–2589. DOI: 10.1021/jp073958q.
Szczurek A., Fierro V., Thébault M., Pizzi A., Celzard A. Eur. Polym. J., 2016, vol. 78, pp. 195–212. DOI: 10.1016/j.eurpolymj.2016.03.037.
Gregg S.J., Sing K.S.W. Adsorption, surface area and porosity. Academic Press: London, UK, 1982, 310 p. DOI: 10.1149/1.2426447.
Loskutov S.R., Shapchenkova O.A., Aniskina A.A. Sibirskiy lesnoy zhurnal, 2015, no. 6, pp. 17–30. DOI: 10.15372/SJFS20150602. (in Russ.).
Kan T., Strezov V., Evans T.J. Renewable and Sustainable Energy Reviews, 2016, vol. 57, pp. 1126–1140. DOI: 10.1016/j.rser.2015.12.185.
Biswas S., Pal A. Carbohydr. Polym. Technologies and Applications, 2021, vol. 2, 100145. DOI: 10.1016/j.carpta.2021.100145.
Sánchez-Martín J., Beltrán-Heredia J., Delgado-Regaña A., Rodríguez-González M.A., Rubio-Alonso F. Chem. Eng. J., 2013, vol. 228, pp. 575–582. DOI: 10.1016/j.cej.2013.05.009.
Copyright (c) 2024 chemistry of plant raw material

This work is licensed under a Creative Commons Attribution 4.0 International License.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.







