ANALYSIS OF TECHNOLOGICAL SCHEMES FOR THE PRODUCTION OF ETHANOL AND ITS CO-PRODUCTS FROM LIGNOCELLULOSE-CONTAINING RAW MATERIALS (REVIEW)

UDC 663.1

  • Valentina Ivanovna Sushkova Vyatka State University Email: sushkovaval@mail.ru
Keywords: hemicelluloses, cellulose, lignin, hydrolysis, pretreatment, enzymatic hydrolysis, fermentation, alcoholic fermentation

Abstract

The creation of a cost–effective technology for processing lignocellulose-containing raw materials into ethanol and high-value-added products is an urgent topic that is widely discussed in the scientific literature. The purpose of this article is to recommend the most optimal schemes for reducing the cost of bioethanol based on the analysis of new known technological schemes for the production of ethanol with complex processing of lignocellulose-containing raw materials into various products, their technological assessment. The objectives of the study include the selection of the most effective solutions for the production of ethanol and co-products from hemicelluloses and lignin based on the analysis of new known technological schemes and technologies. This article analyzes 5 technological schemes for the production of ethanol, one of which is industrial for the processing of woodworking and logging waste into ethanol, and all the other schemes under consideration are based on waste from annual lignocellulose-containing plant raw materials. 2 groups of these wastes are identified and, based on the analysis of literary sources, 2 optimal technological schemes for their processing are given. The first technological scheme is simple environmentally friendly with a closed water use cycle for the disposal of annual crop production waste for farms with the production of the following three products: bio-feed for animals, bioorganomineral fertilizer and biogas. The second scheme is for industrial enterprises processing annual vegetable raw materials and having lignocellulose-containing waste, producing ethanol and its co-products: xylitol or xylooligosaccharides - prebiotics.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Valentina Ivanovna Sushkova , Vyatka State University

professor, Doctor of Biological Sciences

References

Sharkov V.I. Tekhnologiya gidroliznykh proizvodstv. [Technology of hydrolysis production]. Leningrad, 1973, 407 p. (in Russ.).

Kharina M.V., Loginova I.V. Vestnik tekhnologicheskogo universiteta, 2015, vol. 18, pp. 265–269. (in Russ.).

Sushkova V.I., Vorob'yova G.I. Bezotkhodnaya konversiya rastitel'nogo syr'ya v biologicheski aktivnyye veshchestva. [Waste-free conversion of plant materials into biologically active substances]. Moscow, 2008, 215 p. (in Russ.).

Sushkova V.I., Ustyuzhaninova L.V. Metody podgotovki otkhodov proizvodstva lesopileniya i derevoobrabotki k bio-konversii v biorastvoriteli. Dep. v VINITI 1.08.2013, №228-V2013. [Sushkova V.I., Ustyuzhaninova L.V. Methods of preparation of sawmill and woodworking waste for bioconversion into biosolvents. Dep. in VINITI 1.08.2013, no. 228-B2013]. Moscow, 2013, 95 p. (in Russ.).

Sushkova V.I., Ustyuzhaninova L.V., Berezina O.V., Yarotskiy S.V. Khimiya rastitel'nogo syr'ya, 2016, no. 1, pp. 93–119. https://doi.org/10.14258/jcprm.201601841. (in Russ.).

Sushkova V.I. Chronos Journal, 2018, no. 21, pp. 23–44. (in Russ.).

Vorob'yova G.I., Sushkova V.I. Konkurentosposobnoye sel'skokhozyaystvennoye predpriyatiye. [Competitive agricul-tural enterprise]. Moscow, 2021, 187 p. (in Russ.).

Sushkova V.I. Razrabotka tekhnologii bezotkhodnogo proizvodstva etilovogo spirta i kormovykh belkovykh produktov na gidroliznykh zavodakh: avtoref. dis. … dokt. biol. nauk. [Development of technology for waste-free production of ethyl alcohol and feed protein products at hydrolysis plants: author's abstract. dis. … doc. biol. sciences]. Moscow, 2004, 49 p. (in Russ.).

Mironova G.F. Povysheniye effektivnosti protsessa polucheniya bioetanola iz shelukhi ovsa: dis. … kand. tekhn. nauk. [Improving the efficiency of the process of obtaining bioethanol from oat husks: diss. … Cand. of Technical Sciences]. Moscow, 2020, 118 p. (in Russ.).

Chekushina A.V. Tsellyuloliticheskiye fermentnyye preparaty pa osnove gribov Trichoderina, Pénicillium i Myceliophtora s uvelichennoy gidroliticheskoy aktivnost'yu: avtoref. dis. ... kand. khim. nauk. [Cellulolytic enzyme preparations based on Trichoderina, Pénicillium and Myceliophtora fungi with increased hydrolytic activity: author's abstract. diss. ... candidate of chemical sciences]. Moscow, 2013, 23 p. (in Russ.).

Chekushina A.V., Dotsenko G.S., Sinitsyn A.P. Kataliz v promyshlennosti, 2012, no. 6, pp. 68–76. (in Russ.).

Joelsson A.E., Diens D., Kovacs K., Galbe M., Wallberg O. Sustainable chemical processes, 2016, vol. 14, pp. 1–19. https://doi.org/10.1186/s40508-016-0058-5.

Ruiz H.A., Rempel A., Cerqueira M.A., Camargo A.F., Gullón P., Scapini T., Rodríguez-Jasso R.M., Colla L., Gullón B., Treichel H. Hemicellulose Biorefinery: A Sustainable Solution for Value Addition to Bio-Based Products and Bio-energy, 2022, vol. 3, pp. 39–70. https://doi.org/10.1007/978-981-16-3682-0_2.

Borokhova O.E., Ogorodnikova T.Ye., Mikhaylova N.P., Kostenko V.G., Shapovalov O.I. Gidroliznaya i leso-khimicheskaya promyshlennost', 1991, no. 8, pp. 6–8. (in Russ.).

Lopes T.F., Duarte L.C., Carvalheiro F., Cardona C.A., Gírio F. Hemicellulose Biorefinery: A Sustainable Solution for Value Addition to Bio-Based Products and Bioenergy, 2022, vol. 2, pp. 71–110. https://doi.org/10.1007/978-981-16-3682-0_3.

Inbicon: Biotuels Digest. 2014. URL: https://www.biofuelsdigest.com/

Zhu J.Q., Li X., Qin L., Li W.C., Li H.Z., Li B.Z., Yuan Y.J. Bioresour Technol., 2016, vol. 218, pp. 380–387. https://doi.org/10.1016/j.biortech.2016.06.107.

Sheetal K.R., Prasad S., Renjith P.S. Biomass Bioenergy, 2019, vol. 127, 105253. https://doi.org/10.1016/jbiomioe.20198.105253.

Smininger P.J., Shi-Andresh M.A., Thompson S.R., Dien B.S. et al. Biotechnology of biofuels and bioproducts, 2015, vol. 8, 60. https://doi.org/10.1186/s13068-015-0239-6.

Wang L., York S.W., Ingram L.O., Shanmugam K.T. Bioresour Technol., 2019, vol. 273, pp. 269–276. https://doi.org/10.1016/j.biortech.2018.11.016.

Suriyachai N., Weerasaia K., Laosiripojana N., Champreda V., Unrean P. Bioresour Technol., 2013, vol. 142, pp. 171–178. https://doi.org/10.1016/j.biortech.2013.05.003.

Skiba Ye.A. Biotekhnologicheskaya transformatsiya legkovozobnovlyayemogo tsellyulozosoderzhashchego syr'ya v tsen-nyye produkty: avtoref. dis. … dokt. tekhn. nauk. [Biotechnological transformation of easily renewable cellulose-containing raw materials into valuable products: author's abstract. diss. … doctor of technical sciences]. Moscow, 2022, 38 p. (in Russ.).

Abengoa Bioenergy. URL: http://www.ieabioenergy.com.

Abengoa Bioenergy Biomass. URL: http://www.abengoabioenergy.com/web/en/2g-hugoton-proect/.

Vil'danov F.Sh., Latypova F.N., Chanyshev R.R., Nikolayeva S.V. Bashkirskiy khimicheskiy zhurnal, 2011, vol. 18, no. 2, pp. 128–134. (in Russ.).

Vyglazov V.V. Tekhnologiya vysokokachestvennogo ksilita i drugikh poliolov na osnove pentozansoderzhashchego rastitel'nogo syr'ya: avtoref. dis. … dokt. tekhn. nauk. [Technology of high-quality xylitol and other polyols based on pentosan-containing plant raw materials: author's abstract. diss. ... doctor of technical sciences]. St. Petersburg, 2004, 40 p. (in Russ.).

Denisenko G.D., Podymalova L.V., Yolkin V.A. Aktual'nyye problemy lesnogo kompleksa, 2019, pp. 258–261. (in Russ.).

Kind A.V., Kind V.B., Vyglazov V.V., Yolkin V.A. Ul'trafil'tratsionnyy membrannyy apparat dlya ochistki gidroliza-tov rastitel'nogo syr'ya. [Ultrafiltration membrane apparatus for purification of hydrolysates of plant raw materials]. URL: https://textarchive.ru/c-1126718.html. (in Russ.).

Moukagni E.M., Ziegler-Devin I., Safou-Tchima R., Aymes A., Kapel R., Brosse N. Carbohydrate Research, 2022, vol. 519 (4), 108622. https://doi.org/10.1016/j.carres.2022.108622.

Peng F. et al. Biotechnology Advances. 2012, vol. 30(4), pp. 879–903. https://doi.org/10.1016/j.biotechadv.2012.01.018.

Yuan Q.R., Zhang N., Qian Z.M., Yang X.J. J. Chem. Technol. Biotechnol., 2004, vol. 79 (10), pp. 1073–1079. https://doi.org/10.1002/jctb.1071.

Shapovalov O.I. Investitsionnyy proyekt po stroitel'stvu i zapusku v ekspluatatsiyu innovatsionnogo im-portozameshchayushchego biokhimicheskogo predpriyatiya po vypusku ksilita, biotopliva i drugikh unikal'nykh vy-sokotekhnologichnykh produktov. [Investment project for the construction and commissioning of an innovative import-substituting biochemical enterprise for the production of xylitol, biofuel and other unique high-tech products]. 2012. URL: http://www.economy.udmurt.ru. (in Russ.).

Umai D., Kayalvizhi R., Rumar V., Jacob S. Frontiers in Sustainability, 2022, vol. 3, pp. 1–16. https://doi.org/10.3389/frsus.2022.826190.

Granstrom T.B., Izumori K., Leisola M. Appl. Microbiol. Biotechnol., 2007, vol. 74, pp. 273–276. https://doi.org/10.1007/s00253-006-0760-4.

Patel A., Shah A.R. Journal of Bioresources and Bioproducts, 2021, vol. 6(2), pp. 108–128. https://doi.org/10.1016/j.jobab.2021.02.001.

Chen E., Dong B., Qin W., Xiao D. Bioresource technology, 2010, vol. 101(18), pp. 7005–7010. https://doi.org/10.1016/j.biortech.2010.03.132.

Boltovskiy V.S. Khimiya rastitel'nogo syr'ya, 2014, no. 2, pp. 5–12. (in Russ.).

Sushkova V.I. Khimiya rastitel'nogo syr'ya, 2023, no. 2, pp. 27–54. https://doi.org/10.14258/jcprm.20230211880. (in Russ.).

Garrote G., Dominguez H., Parajo J.C. Journal of Chemical Technology and Biotechnology, 1999, vol. 74, pp. 1101–1109. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1101::AID-JCTB146>3.0.CO;2-M.

Hansen M.A.T., Hidayat B.J., Mogensen K.K., Jeppesen M.D., Jørgensen B., Johansen K.S., Thygesen L.G. Biotech-nology for Biofuels, 2013, vol. 6, 54. https://doi.org/10.1186/1754-6834-6-54.

Nagalyuk Ye.A., Chalov I.V., Kozlov L.V. i dr. Sbornik trudov VNIIGidroliz «Gidroliz i biotekhnologiya». [Collection of works of the All-Russian Research Institute of Hydrolysis “Hydrolysis and Biotechnology”]. Leningrad, 1982, vol. 32, pp. 12–21. (in Russ.).

Jensen A., Cabrera Y., Hsieh C.-W., Nielsen J., Ralph J., Felby C. Holzforschung, 2017, vol. 71(6), pp. 461–469. https://doi.org/10.1515/hf-2016-0112.

Otieno D.O., Ahring B.K. Bioresource Technology, 2012, vol. 112, pp. 285–292. https://doi.org/10.1016/j.biortech.2012.01.162.

Wang W., Chen X., Donohue B.S. et al. Biotechnology for Biofuels, 2014, pp. 7–57. https://doi.org/10.1186/1754-6834-7-57.

Bhatia R., Winters A., Bryant D.N., Bosch M., Brown J.C., Leak D., Gallagher J. Bioresource Technology, 2020, vol. 296, 122285. https://doi.org/10.1016/j.biortech.2019.122285.

Cui L., Liu Z., Si C. et al. BioResources, 2012, vol. 7 (3), pp. 4202–4213. https://doi.org/10.15376/biores.7.3.4202-4213.

Zhang H., Xu Y., Yu S. Bioresource technology, 2017, vol. 234, pp. 343–349. https://doi.org/10.1016/j.biortech.2017.02.094.

Patent 2432368C2 (RU). 27.10.2011. (in Russ.).

Huang C., Lai C., Wu X., Huang Y., He J., Huang C., Li X., Yong Q. Bioresource Technology, 2017, vol. 241, pp. 228–235. https://doi.org/10.1016/j.biortech.2017.05.109.

Haven M.O., Joigensen H. Biotechnology biotuels and bioproducts, 2013, vol. 6(1), 165. https://doi.org/10.1186/1754-6834-6-165.

Mosier N.S., Hendrickson R., Brewer M. et al. Appl. Biochem. Biotechnol., 2005, vol. 5, pp. 77–97. https://doi.org/10.1385/abab:125:2:077.

Laser M., Schulman D., Allen S.G. et al. Bioresource Technol., 2002, vol. 81, pp. 33–44. https://doi.org/10.1016/s0960-8524(01)00103-1.

Lu J., Li X.Z., Zhao J., Qu Y. Journal of Biomedicine and Biotechnology, 2012, vol. 20, 276278. https://doi.org/10.1155/2012/276278.

de Freitas C., Terrone C.C., Forsan C.F., Milagres A.M.F., Brienz M. Hemicellulose Biorefinery: A Sustainable Solu-tion for Value Addition to Bio-Based Products and Bioenergy, 2022, pp. 275–310. https://doi.org/10.1007/978-981-16-3682-0_9.

Vedernikovs N., Khroustalyova G., Muiznieks I. et al. Appl. Microbiol. Biotechnol., 2023, vol. 107(2-3), pp. 535–542. https://doi.org/10.1007/s00253-022-12353-8.

Zamora H.D., Olayiwola H.O., Jacobus A.P., Gross J., Tyhoda L., Brienzo M. Hemicellulose Biorefinery: A Sustaina-ble Solution for Value Addition to Bio-Based Products and Bioenergy, 2022, pp. 1–38. https://doi.org/10.1007/978-981-16-3682-0_1.

Banot C., Sunkar B., Thondamanathi P.R., Bhukya B. Biotechnology, 2017, vol. 7(5), 334. https://doi.org/10.1007/s13205-017-0980-6.

Wang Y., Wei L., Li K., Ma Y., Ma N., Ding S., Wang L., Zhao D., Yan B., Wan W., Zhang Q., Wang X., Wang J., Li H. Bioresource technology, 2014, vol. 170, pp. 499–505. https://doi.org/10.1016/j.biortech.2014.08.020.

Makhova T.A. Svoystva i primeneniye atsetata 1-butil-3-metilimidazoliya v khimii lignina: avtoref. dis. … kand. khim. nauk. [Properties and application of 1-butyl-3-methylimidazolium acetate in lignin chemistry: abstract of thesis. dis. ...cand. chem. Sci]. Arkhangel'sk, 2011, 19 p. (in Russ.).

Morozova O.V., Vasil'yeva I.S., Shumakovich G.P., Zaytseva Ye.A., Yaropolova A.I. Uspekhi biologicheskoy khimii, 2023, vol. 63, pp. 301–348. (in Russ.).

Morais E.S., da Costa Lopes A.M., Freire M.G., Freire C.S.R., Coutinho J.A.P., Silvestre A.J.D. Molecules, 2020, vol. 25, 3652. https://doi.org/10.3390/molecules25163652.

Morais E.S., Mendonça P.V., Coelho J.F.J., Freire M.G., Freire C.S.R., Coutinho J.A.P., Silvestre A.J.D. ChemSus-Chem, 2018, vol. 11(4), pp. 753–762. https://doi.org/10.1002/cssc.201702007.

Francisco M., van den Bruinhorst A., Kroon M.C. Green Chemistry, 2012, vol. 14, pp. 2153–2157. https://doi.org/10.1039/c2gc35660k.

Kumar A.K., Sharma S., Shah E., Patel A. Journal of Molecular Liquids, 2018, vol. 260, pp. 313–322. https://doi.org/10.1016/jmollig.2018.03.107.

Kumar A.K., Parikh B.S., Shah E., Liu L.Z., Cotta M.A. Biocatalysis and Agricultural Biotechnology, 2016, vol. 7, pp. 14–32. https://doi.org/10.1016/jbcab2016.04.08.

Gundupalli M.P., Cheenkachorn K., Chuetor S., Kirdponpattara S., Gundupalli S.P., Po-Loke S., Sriarianu M. A car-bohydrate Polymer, 2023, vol. 306, 120599. https://doi.org/10.1016/j.carbpol.2023.120599.

Ma H., Fu P., Zhao J., Lin X., Wu W., Yu Z., Xia C., Wang K., Gao M., Zhou J. Molecules, 2022, vol. 27(22), 7955. https://doi.org/10.3390/molecules27227955.

Yu H., Xue Z., Shi R., Zhou F., Mu T. Industrial Crops and Products, 2022, vol. 184, 115049. https://doi.org/10.1016/j.indcrop.2022.115049.

Deng H.-Q., Lin X.-H., Fan J.-T. et al. Biotechnology of biofuels and bioproducts, 2023, vol. 16 (1), 126. https://doi.org/10.1186/s13068-023-02369-1.

Oguche J.E., Ameh A.O., Bello T.K., Maina N.S. Journal of Engineering, 2022, vol. 29, no. 3, pp. 37–47.

Zhao Z., Chen X., Ali M.F., Abdeltawab A.A., Yakout S.M., Yu G. Bioresource Technology, 2018, vol. 263, pp. 325–333. https://doi.org/10.1016/j.biortech.2018.05.016.

Masyutin Ya.A. Sintez i issledovaniye energonasyshchennykh furanovykh soyedineniy na baze vozobnovlyayemogo rastitel'nogo syr'ya: avtoref. dis. … kand. khim. nauk. [Synthesis and study of energy-saturated furan compounds based on renewable plant raw materials: author's abstract. dis. … candidate of chemical sciences]. Moscow, 2015, 25 p. (in Russ.).

Patent 2532107 (RU). 2014. (in Russ.).

Patent 20090229599 (US). 2009.

Patent 2509778 (RU). 20.03.2014. (in Russ.).

Clextral. URL: http://www.clextral.com.

Zhukov N.A. Teoreticheskiye osnovy i tekhnologicheskiye printsipy nepreryvnoy konversii rastitel'nogo syr'ya: avtoref. dis. … dokt. tekhn. nauk. [Theoretical foundations and technological principles of continuous conversion of plant raw materials: author's abstract. dis. … doctor of technical sciences]. Kirov, 2001, 45 p. (in Russ.).

Combette F. Clextrusion, 2010, no. 19, pp. 8–9.

Patent 2051038 (RU). 1995. (in Russ.).

Patent 4316748 (US). 1982.

Patent 4390375 (US). 1983.

Published
2025-04-25
How to Cite
1. Sushkova V. I. ANALYSIS OF TECHNOLOGICAL SCHEMES FOR THE PRODUCTION OF ETHANOL AND ITS CO-PRODUCTS FROM LIGNOCELLULOSE-CONTAINING RAW MATERIALS (REVIEW) // Chemistry of plant raw material, 2025. № 2. P. 5-27. URL: https://journal.asu.ru/cw/article/view/15474.
Section
Reviews