APPLICATION OF HUMIC ACIDS TO INCREASE RESISTANCE OF GREEN ROOF PLANT COMMUNITY TO HEAVY METAL CONTAMINATION

UDC 615.076.7+574.24

  • Kristina Viktorovna Osina Tula State University http://orcid.org/0000-0001-7811-5025 Email: kristina-syundyukova@yandex.ru
  • Anna Andreevna Gunina Peoples' Friendship University of Russia Email: guninaann@gmail.com
Keywords: humic acids, heavy metal ions, toxicity, plant adaptation, green roofs, substrates, microorganisms

Abstract

Green roofs provide several ecosystem services, but due to the accumulation of atmospheric dust, they can be contaminated with heavy metals, which can reduce plant growth and pollute water runoff. In this study, we tested the original humic acids (HAo) isolated from black alder lowland peat and modified (HAmod) by reduction with sodium borohydride. The targeted chemical modification increased the phenolic group content in HAmod by 20% compared to HAo, increasing the ability of HAmod to reduce the toxic effect of heavy metal ions by binding them into non-toxic complexes. Testing with the “Ecolum” system showed that HAo and HAmod at concentrations of 50 and 100 mg L-1 did not have a toxic effect on microorganisms and can be used to reduce the toxicity of heavy metal ions. The addition of 50 mg L-1 HAmod reduced the toxicity of Cd2+ to an acceptable level, and the toxicity index for Zn2+ decreased by 2 times. The content of phenolic compounds in the test object (garden cress (Lepidium sativum)) grown on gray forest soil contaminated with cadmium (10 mg·kg-1) and zinc (100 mg·kg-1) ions decreased after the application of HAmod, indicating a reduction of plant stress. HAmod stimulated the root system of garden cress compared to the control; the total biomass increased by 90–120% compared to the substrate contaminated with Cd2+ and Zn2+ without the addition of HAmod. Thus, HAmod can be used to reduce the toxicity of heavy metal ions in substrates of green roofs.

Downloads

Download data is not yet available.

Author Biographies

Kristina Viktorovna Osina, Tula State University

Candidate of Chemical Sciences, Associate Professor of the Department of Chemistry

Anna Andreevna Gunina, Peoples' Friendship University of Russia

Candidate of Biological Sciences, Leading Researcher

References

Kazemi F., Mohorko R. Urban Forestry & Urban Greening, 2017, vol. 23, pp. 13–26. https://doi.org/10.1016/j.ufug.2017.02.006.

Vanuytrecht E., Van Mechelen С., Van Meerbeek K., Willems P., Hermy M., Raes D. Landscape and Urban Plan-ning, 2014, vol. 122, pp. 68–77. https://doi.org/10.1016/j.landurbplan.2013.11.001.

Berndtsson J.C., Emilsson T., Bengtsson L. Science of the Total Environment, 2006, vol. 355 (1-3), pp. 48–63. https://doi.org/10.1016/j.scitotenv.2005.02.035

Speak A.F., Rothwell J.J., Lindley S.J., Smith C.L. Atmospheric Environment, 2012, vol. 61, pp. 283–293. https://doi.org/10.1016/j.atmosenv.2012.07.043.

de Melo B.A.G., Motta F.L., Santana M.H.A. Materials Science and Engineering, 2016, vol. 62, pp. 967–974. https://doi.org/10.1016/j.msec.2015.12.001.

Ampong K., Thilakaranthna M.S., Gorim L.Y. Frontiers in Agronomy, 2022, vol. 4, 848621. https://doi.org/10.3389/fagro.2022.848621.

Mackowiak C.L., Grossl P.R., Bugbee B.G. Soil Science Society of America Journal, 2001, vol. 65, no. 6, pp. 1744–1750. https://doi.org/10.2136/sssaj2001.1744.

Norman Q., Arancon N.O., Edwards C.A., Lee S., Byrne R. European journal of soil biology, 2006, vol. 42, pp. 65–69. https://doi.org/10.1016/j.ejsobi.2006.06.004.

Nardi S., Schiavon M., Francioso O. Molecules, 2021, vol. 26, no. 8, 2256. https://doi.org/10.3390/molecules26082256.

Gurova O.A., Somikova T.Y., Novikov A.A. et al. Plant Archives, 2020, vol. 20, no. 1, pp. 2847–2850.

Yakimenko O.S., Terekhova V.A. Eurasian Soil Science, 2011, vol. 44, no. 11, pp. 1222–1230. https://doi.org/10.1134/S1064229311090183.

Baryla A., Carrier P., Franck F. et al. Planta, 2001, vol. 212, pp. 696–709. https://doi.org/10.1007/s004250000439.

Ebbs S., Uchil S. Photosynthetica, 2008, vol. 46, pp. 49–55. https://doi.org/10.1007/s11099-008-0010-3.

Shaari N.E.M. et al. Brazilian Journal of Biology, 2022, vol. 84, e252143. https://doi.org/10.1590/1519-6984.252143.

Marschner H., Cakmak I. Journal of Plant physiology, 1989, vol. 134, no. 3, pp. 308–315. https://doi.org/10.1016/S0176-1617(89)80248-2.

Kováčik J. et al. Plant Science, 2007, vol. 172, no. 2, pp. 393–399. https://doi.org/10.1016/j.plantsci.2006.10.001.

Dmitriyeva Ye.D., Syundyukova K.V., Akatova Ye.V., Leont'yeva M.M., Volkova Ye.M., Muzafarov E.H. Khimiya rastitel'nogo syr'ya, 2017, no. 1, pp. 137–144. https://doi.org/10.14258/jcprm.2017011418. (in Russ.).

Akatova Ye.V., Dmitriyeva Ye.D., Syundyukova K.V., Leont'yeva M.M., Muzafarov E.H. Khimiya rastitel'nogo syr'ya, 2017, no. 1, pp. 119–127. https://doi.org/10.14258/jcprm.2017011382. (in Russ.).

Trevisan S., Francioso O., Quaggiotti S., Nardi S. Plant signaling & behavior, 2010, vol. 5, no. 6, pp. 635–643. https://doi.org/10.4161/psb.5.6.11211.

Canellas L.P., da Silva R.M., Busato J.G., Olivares F.L. Chemical and Biological Technologies in Agriculture, 2024, vol. 11, no. 1, 66. https://doi.org/10.1186/s40538-024-00575-z.

Atero-Calvo S., Navarro-León E., Rios J.J., Blasco B., Ruiz J.M. Biostimulants in Plant Protection and Performance. Elsevier, 2024, pp. 89–106. https://doi.org/10.1016/B978-0-443-15884-1.00025-7.

de Moura O.V.T. et al. Journal of the Saudi Society of Agricultural Sciences, 2023, vol. 22, no. 8, pp. 493–513. https://doi.org/10.1016/j.jssas.2023.05.001.

Published
2025-12-11
How to Cite
1. Osina K. V., Gunina A. A. APPLICATION OF HUMIC ACIDS TO INCREASE RESISTANCE OF GREEN ROOF PLANT COMMUNITY TO HEAVY METAL CONTAMINATION // Chemistry of plant raw material, 2025. № 4. P. 416-424. URL: https://journal.asu.ru/cw/article/view/16183.
Section
Application