COMPONENT COMPOSITION OF THE ESSENTIAL OIL OF MYRICA GALE L. FROM INTRODUCTION

UDC 582.883: 547.913

  • Natalya Valerievna Petrova Komarov Botanical Institute of the Russian Academy of Sciences Email: NPetrova@binran.ru
  • Нина Анатольевна Медведева Komarov Botanical Institute of the Russian Academy of Sciences, Herzen State Pedagogical University of Russia Email: namedvedeva@mail.ru
  • Aleksey Leonidovich Shavarda Komarov Botanical Institute of the Russian Academy of Sciences Email: Shavarda@binran.ru
  • Oleg Vladimirovich Matusevich Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg State Pediatric Medical University Email: OMatusevich@binran.ru
  • Yusova Ekaterina Dmitrievna Herzen State Pedagogical University of Russia Email: katyayusova2001@yandex.ru
Keywords: Myrica gale, (Z)-nerolidol, germacrene B, δ-cadinene, 1,10-di-epi-cubenol, 1,8-cineole, (Е)-caryophyllene

Abstract

Myrica gale L. (Myricaceae) is one of the rare and protected plant species in Russia. In 2011, during the construction of a section of the intracity toll highway in St. Petersburg, the route was laid through the Yuntolovsky forest park, where there was a significant population of Myrica gale. Some of the plants were transplanted to the territory of the Yuntolovsky reserve, and some to the park of the Komarov Botanical Institute RAS (St. Petersburg). In this work, the component composititon of the essential oil of Myrica gale leaves growing in new locations was studied. The essential oil was obtained by hydrodistillation. The yield of essential oil from Myrica gale leaves collected on the territory of the Yuntolovsky reserve ranged from 0.21 to 1.55%. 52 components were identified, among which the main ones were (Z)-nerolidol (15.71%), germacrene B (11.47%), δ-cadinene (9,76 %), an unidentified component Un 1532 with tR=19.92 min (9.34%) and 1,10-di-epi-cubenol (5.61%). The yield of essential oil from Myrica gale leaves collected on the territory of BIN RAS park is from 0.09% to 0.13%. 49 components were identified, among which the predominant ones were δ-cadinene (14.11%), 1,10-di-epi-cubenol (8.59%), (Z)-nerolidol (8.43%), 1,8-cineole (6.01%) и (Е)-caryophyllene (5.01%). It was determined that in the studied populations the prosess of formation of acyclic sesquiterpene alcohols dominates, which leads to a significant accumulation of nerolidol. In general, a change in the habitat of Myrica gale (transplantation of some plants into the Yuntolovsky reserve and the park of the BIN RAS) did not significantly affect the terpene profile of the essential oil.

Downloads

Download data is not yet available.

Author Biographies

Natalya Valerievna Petrova, Komarov Botanical Institute of the Russian Academy of Sciences

Candidate of Biological Sciences, Senior Researcher

Нина Анатольевна Медведева, Komarov Botanical Institute of the Russian Academy of Sciences, Herzen State Pedagogical University of Russia

Candidate of Biological Sciences, Associate Professor, Senior Researcher

Aleksey Leonidovich Shavarda, Komarov Botanical Institute of the Russian Academy of Sciences

Candidate of Biological Sciences, Laboratory Head

Oleg Vladimirovich Matusevich, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg State Pediatric Medical University

Candidate of Chemical Sciences, Junior Researcher

Yusova Ekaterina Dmitrievna, Herzen State Pedagogical University of Russia

Master's Student

References

Skene K., Sprent J., Herdman L. J. Ecol., 2000, vol. 88(6), pp. 1079–1094.

olchennikova I.O., Antonova I.S. Trudy instituta biologii vnutrennikh vod im. I.D. Papanina RAN, 2021, no. 95 (98), pp. 52–62. https://doi.org/10.47021/0320-3557-2021-52-62. (in Russ.).

Volkova Ye.A., Smagin V.A., Khramtsov V.N. Rastitel'nost' Rossii, 2021, no. 41, pp. 58–74. https://doi.org/10.31111/vegrus/2021.41.58. (in Russ.).

Krasnaya kniga Rossiyskoy Federatsii. Rasteniya i griby. [Red Data Book of the Russian Federation. Plants and fungi]. Moscow, 2008. (in Russ.).

Davey A., Gibson C. New Phytologist, 1917, vol. 74, pp. 147–151.

Huguet V., Mergeay M., Cervantes E., Fernandez M.P. Environment. Microbiol., 2004, vol. 6, no. 10, pp. 1032–1041. https://doi.org/10.1111/j.1462-2920.2004.00625.x.

Uyar T., Malterud K.E., Anthonsen T. Phytochemistry, 1978, vol. 17(11), pp. 2011–2013. https://doi.org/10.1016/S0031-9422(00)88753-1.

Malterud K.E., Diep O.H., Sund R.B. Pharmacol. Toxicol., 1996, vol. 78(2), pp. 111–116. https://doi.org/10.1111/j.1600-0773.1996.tb00190.x.

Fang J., Paetz C., Schneider B. Biochem. Syst. Ecol., 2011, vol. 39(1), pp. 68–70. https://doi.org/10.1016/j.bse.2011.01.009.

Carlton R., Waterman P., Gray A. Chemoecology, 1992, vol. 3, pp. 45–54. https://doi.org/10.1007/bf01261456.

Simpson M.J.A., Maclntosh D.F., Cloughley J.B., Stuart A.E. Economic Bot., 1996, vol. 50(1), pp. 122–129.

Sylvestre M., Legault J., Dufour D., Pichette A. Phytomedicine, 2005, vol. 12(4), pp. 299–304. https://doi.org/10.1016/j.phymed.2003.12.004.

Kashina A.A., Gurina S.V., Yakovlev G.P. Rastitel'nyye resursy, 2009, vol. 49(2), pp. 127–133. (in Russ.).

Krogsbøll L., Karring H., Christensen L.P. Planta Med., 2016, vol. 82, pp. 1–381. https://doi.org/10.1055/s-0036-1596460.

Tkachev A.V. Khimiya rastitel'nogo syr'ya, 2017, no. 3, pp. 5–37. https://doi.org/10.14258/jcprm.2017032712. (in Russ.).

Adams R.P. Identification of essential oil components by gas chromatography/mass spectroscopy. Allured business media, Carol stream, 2007, 804 p.

Babushok V.I., Linstrom P.J., Zenkevich I.G. J. Phys. Chem. Ref. Data, 2011, vol. 40(4), 043101. https://doi.org/10.1063/1.3653552.

Halim A.F., Collins R.P. Phytochemistry, 1973, vol. 12(5), pp. 1077–1083. https://doi.org/10.1016/0031-9422(73)85019-8.

Svoboda K., Inglis A., Hampson J., Galambosi B., Asakawa Y. Flavour Fragr. J., 1998, vol. 13, pp. 367–372. https://doi.org/10.1002/(SICI)1099-1026(199811/12)13:6<367::AID-FFJ724>3.0.CO;2-M.

Ložienė K., Labokas J., Vaičiulytė V., Švedienė J., Raudonienė V., Paškevičius A., Šveistytė L., Apšegaitė V. Baltic Forestry, 2020, vol. 26(1), 423. https://doi.org/10.46490/BF423.

Popovici J., Bertran C., Bagnarol E., Fernandez M.P., Comte G. Nat. Prod. Res., 2008, vol. 22(2), pp. 1024–1032. https://doi.org/10.1080/14786410802055568.

Wawrzyńczak K., Jakiel A., Kalemba D. Biotechnol. Food Chem., 2019, vol. 83(1), pp. 87–96. https://doi.org/10.34658/bfs.2019.83.1.87-96.

Fiehn O., Robertson D., Griffin J., Werf M., Nikolau B., Morrison N. Metabolomics: official journal of the metabo-lomics society, 2007, vol. 3(3), pp. 175–178. https://doi.org/10.1007/s11306-007-0070-6.

Nagar S., Pigott M., Whyms S., Berlemont A., Sheridan H. Separations, 2023, vol. 10, 128. https://doi.org/10.3390/separations10020128.

Chan W.K., Tan L.T.H., Chan K.G., Lee L.H., Goh B.H. Molecules, 2016, vol. 21(5), 529. https://doi.org/10.3390/molecules21050529.

Cai Z.M., Peng J.Q., Chen Y., Tao L., Zhang Y.Y., Fu L.Y., Long Q.D., Shen X.C. J. Asian Nat. Prod. Res., 2021, vol. 23(11), pp. 938–954. https://doi.org/10.1080/10286020.2020.1839432.

Borges M.F.A., Lacerda R.S., Correia J.P.A., de Melo T.R., Fereira S.B. Med. Sci. Forum, 2022, vol. 12(1), 11. https://doi.org/10.3390/eca2022-12709.

Published
2025-12-10
How to Cite
1. Petrova N. V., Медведева Н. А., Shavarda A. L., Matusevich O. V., Ekaterina Dmitrievna Y. COMPONENT COMPOSITION OF THE ESSENTIAL OIL OF MYRICA GALE L. FROM INTRODUCTION // Chemistry of plant raw material, 2025. № 4. P. 270-278. URL: https://journal.asu.ru/cw/article/view/16450.
Section
Low-molecular weight compounds