EXPLORING THE USE OF RICE HUSK PROCESSING BYPRODUCTS IN COMPOSITE SUPERABSORBENT MATERIAL SYNTHESIS

UDC 544.773.432

  • Andrey Viktorovich Sorokin Voronezh State University Email: andrew.v.sorokin@gmail.com
  • Anastasia Valeryevna Skorlukhanova Voronezh State University Email: nastya.smolianinova@icloud.com
  • Egor Maksimovich Tsimmer Voronezh State University Email: tujh201930@mail.ru
  • Maria Sergeevna Lavlinskaya Voronezh State University Email: maria.lavlinskaya@gmail.com
Keywords: rice husk, carboxymethylation, superabsorbents, equilibrium swelling ratio, swelling kinetics

Abstract

Rice husk, a byproduct of rice grain cleaning, is an agricultural waste rich in polysaccharide and silicon fractions. Its disposal through burning harms the environment and results in the loss of a valuable raw material for producing various chemical technology products. This study aimed to synthesize composite superabsorbents from the carboxymethylated polysaccharide fraction of rice husk and to evaluate the water absorption characteristics of the resulting polymers. The polysaccharide fraction was extracted through sequential acid and alkaline hydrolysis, followed by carboxymethylation to enhance water solubility. The synthesized products were characterized using FTIR spectroscopy and scanning electron microscopy. The carboxymethylated rice husk derivative was utilized in the synthesis of composite superabsorbents, which demonstrated water-absorbing properties comparable to those of commercial carboxymethyl cellulose. Notably, these superabsorbents exceeded commercially available samples in terms of water absorption performance. An analysis of the swelling behavior of the synthesized superabsorbents revealed that the process is governed by chemisorption. It was observed that water molecule diffusion within the polymer matrix occurred at a slower rate compared to samples derived from commercial carboxymethyl cellulose. These findings highlight the potential of rice husk-derived materials as promising components for the synthesis of composite superabsorbents.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Andrey Viktorovich Sorokin, Voronezh State University

Candidate of Biological Sciences, Senior Researcher in the Department of Macromolecular Compounds and Colloid Chemistry, Senior Researcher in the Department of Biophysics and Biotechnology

Anastasia Valeryevna Skorlukhanova, Voronezh State University

Master's student

Egor Maksimovich Tsimmer, Voronezh State University

Student

Maria Sergeevna Lavlinskaya, Voronezh State University

Candidate of Chemical Sciences, Senior Researcher in the Department of Biophysics and Biotechnology

References

Zelenskiy G.L. Ris: biologicheskiye osnovy selektsii i agrotekhniki. [Rice: biological foundations of selection and agri-cultural technology]. Krasnodar, 2016, 238 p. (in Russ.).

Sergiyenko V.I., Zemnukhova L.A., Yegorov A.G., Shkorina Ye.D., Vasilyuk N.S. Zhurnal Rossiyskogo khimich-eskogo obshchestva im. D.I. Mendeleyeva, 2004, vol. 53, no. 3, pp. 116–124. (in Russ.).

Zohuriaan M., Kabiri K. Iran. Polymer Journal, 2008, vol. 17 (6), pp. 451–477.

Bashari A., Rouhani Shirvan A., Shakeri M. Polym. Adv. Technol., 2018, vol. 29, no. 12, pp. 2853–2867. https://doi.org/10.1002/pat.4290.

Sannino A., Demitry C., Madaghiele M. Materials, 2009, vol. 2, no. 2, pp. 353–373. https://doi.org/10.3390/ma2020353.

Dabhi R., Bhatt N., Pandit B. Int. J. Eng. Res., 2014, vol. 3, pp. 1402–1406.

Sorokin A., Sukhanov P., Popov V., Kannykin S., Lavlinskaya M. Cellulose, 2022, vol. 29, no. 1, pp. 159–173. https://doi.org/10.1007/s10570-021-04326-3.

Buchholz F.L., Graham A.T. Modern superabsorbent polymer technology. New York: Wiley-VCH, 1998, 279 p. https://doi.org/10.5860/choice.35-5664

Po R. Journal of Macromolecular Science, Part C: Polymer Reviews, 1994, vol. 34, no. 4, pp. 607–662. https://doi.org/10.1080/15321799408014168.

Zhang J., Wang A. React. Funct. Polym., 2007, vol. 67, no. 8, pp. 737–745. https://doi.org/10.1016/j.reactfunctpolym.2007.05.001.

Rashidzadeh A., Olad A. Carbohydr. Polym., 2014, vol. 114, pp. 269–278. https://doi.org/10.1016/j.carbpol.2014.08.010.

Guilherme M., Aouada F., Fajardo A., Martins A., Paulino A., Davi M., Rubira A., Muniz E. European Polymer Journal, 2015, vol. 72, pp. 365–385. https://doi.org/10.1016/j.eurpolymj.2015.04.017.

Klinpituksa P., Kosiyakanon P. Int. J. Polym. Sci., 2017, vol. 2017, pp. 1–6. https://doi.org/10.1155/2017/3476921.

Raju K.M., Raju M.P., Mohan Y.M. J. Appl. Polym. Sci., 2002, vol. 85, no. 8, pp. 1795–1801. https://doi.org/10.1002/app.10731.

Behera S., Mahanwar P.A. Polym.-Plast. Technol. Mater., 2020, vol. 59, no. 4, pp. 341–356. https://doi.org/10.1080/25740881.2019.1647239.

Drury J.L., Mooney D.J. Biomaterials, 2003, vol. 24, no. 24, pp. 4337–4351. https://doi.org/10.1016/S0142-9612(03)00340-5.

Lee W., Lin Y. J. Appl. Polym. Sci., 2001, vol. 81, no. 6, pp. 1360–1371. https://doi.org/10.1002/app.1561.

Bajpai S.K., Bajpai M., Sharma L. Des. Monomers Polym., 2007, vol. 10, no. 2, pp. 181–192. https://doi.org/10.1163/156855507780378285.

Barana D., Salanti A., Orlandi M., Ali S., Luca Z. Ind. Crop. Prod., 2016, vol. 86, pp. 31–39. https://doi.org/10.1016/j.indcrop.2016.03.029.

Nafo N., Zenitova L., Prosvirnikov D., Safin R. Systems. Methods. Technologies, 2019, vol. 3(43), pp. 122–128. https://doi.org/10.18324/2077-5415-2019-3-122-128.

Chen S.-C., Wu Y.-C., Mi F.-L., Lin Y.-H., Yu L.-C., Sung H.-W. Journal of Controlled Release, 2004, vol. 96, no. 2, pp. 285–300. https://doi.org/10.1016/j.jconrel.2004.02.002.

Revellame E., Fortela D., Sharp W., Hernandez R., Zappi M. Cleaner Engineering and Technology, 2020, vol. 1, 100032. https://doi.org/10.1016/j.clet.2020.100032.

Ho S.Y., McKay G. Process biochemistry, 1999, vol. 34, no. 5, pp. 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.

Peppas N.A., Khare A.R. Advanced drug delivery reviews, 1993, vol. 11, no. 1-2, pp. 1–35. https://doi.org/10.1016/0169-409X(93)90025-Y.

Kostryukov S.G., Malov N.A., Matyakubov Kh.B., Konushkin I.A. Vestnik Permskogo universiteta. Seriya «Khimi-ya», 2022, vol. 12, no. 1, pp. 5–16. https://doi.org/10.17072/2223-1838-2022-1-5-16. (in Russ.).

Reznikov V.M., Sorokina N.F. Obshchaya i prikladnaya khimiya, 1972, no. 4, pp. 107–115. (in Russ.).

Kazitsyna L.A., Kupletskaya N.B. Primeneniye IK-, UF-, YAMR-spektroskopii v organicheskoy khimii: ucheb. posob. dlya vuzov. [Application of IR, UV, NMR spectroscopy in organic chemistry: textbook for universities]. Moscow, 1971, 264 p. (in Russ.).

Shipina O.T., Garayeva M.R., Aleksandrov A.A. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2009, no. 6, pp. 148–151. (in Russ.).

Zarubina A.N., Ivankin A.N., Kuleznev A.S., Kochetkov A.S. Lesnoy vestnik, 2019, vol. 23, no. 5, pp. 116–125. https://doi.org/10.18698/2542-1468-2019-5-116-125. (in Russ.).

Murashkevich A.N., Lavlinskaya A.S., Barannikova T.I., Zharskiy I.M. Zhurnal prikladnaya spektroskopiya, 2008, vol. 75, no. 5, pp. 724–728. (in Russ.).

Markin V.I., Bazarnova N.G., Karpova Ye.V., Skvortsov Ye.V. Khimiya rastitel'nogo syr'ya, 2000, no. 4, pp. 39–47. (in Russ.).

Tarasevich B.N. IK-spektry osnovnykh klassov organicheskikh soyedineniy. Spravochnyye materialy. [IR spectra of the main classes of organic compounds. Reference materials]. Moscow, 2012, 54 p. (in Russ.).

Stojanović Ž., Jeremić K., Jovanović S., Lechner M. Starch, 2005, vol. 57, pp. 79–83. https://doi.org/10.1002/star.200400342.

Kolosov P.V., Bazarnova N.G., Markin V.I. Vysokomolekulyarnyye produkty karboksimetilirovaniya rastitel'nogo sy-r'ya s sorbtsionnymi svoystvami. [High-molecular products of carboxymethylation of plant raw materials with sorption properties]. Barnaul, 2014, 134 p. (in Russ.).

Sorokin A.V., Goncharova S.S., Lavlinskaya M.S., Holyavka M.G., Faizullin D.A., Zuev Y.F., Kondratyev M.S., Artyukhov V.G. International Journal of Molecular Sciences, 2023, vol. 24, 11246. https://doi.org/10.3390/ijms241411246.

Peppas N., Brannon-Peppas L. Journal of Food Engineering, 1994, vol. 22, pp. 189–210. https://doi.org/10.1016/0260-8774(94)90030-2.

Published
2025-11-20
How to Cite
1. Sorokin A. V., Skorlukhanova A. V., Tsimmer E. M., Lavlinskaya M. S. EXPLORING THE USE OF RICE HUSK PROCESSING BYPRODUCTS IN COMPOSITE SUPERABSORBENT MATERIAL SYNTHESIS // Chemistry of plant raw material, 2025. № 4. P. 121-131. URL: https://journal.asu.ru/cw/article/view/16512.
Section
Biopolymers of plants