GLUCOSINOLATES: CHEMICAL CHARACTERISTICS AND BIOLOGICAL ACTIVITY (REVIEW)

UDC 615.1:547.9:577.1

  • Mikhail Artemovich Nazlukhanyan Pyatigorsk Medical and Pharmaceutical Institute - branch of the Federal State Budgetary Educational Institution of Higher Education VolgGMU of the Ministry of Health of Russia Email: mikhail.nazlukhanyan@mail.ru
  • Anna Gurgenovna Kuregyan Pyatigorsk Medical and Pharmaceutical Institute – branch of the Federal State Budgetary Educational Institution of Higher Education VolgSMU https://orcid.org/0000-0002-0698-8254 Email: Kooreguan@mail.ru
  • Stanislav Vitalyevich Pechinsky Pyatigorsk Medical and Pharmaceutical Institute - branch of the Federal State Budgetary Educational Institution of Higher Education VolgGMU of the Ministry of Health of Russia https://orcid.org/0000-0002-9505-9990 Email: hplc@yandex.ru
Keywords: glucosinolates, cabbage, synthesis, biological activity, high performance liquid chromatography

Abstract

Currently, in the domestic scientific literature there is no structured information combining data on glucosinolates (CLS) as a class of biologically active compounds (BAC) that is promising for research. The article provides a systematic material on the chemical characteristics of CLS, which unite sulfur-containing glycosides of representatives of the cabbage family (Brassicaceae), chemical classification and possible pathways for chemical synthesis of CLS. The metabolism and biological activity of CLS are discussed separately. It is shown that under the action of myrosinase, active metabolites are formed, in particular, isothiocyanates (ITC), which are the main products of CLS hydrolysis. An analysis of literary data on the antitumor and cardioprotective activities of CLS and their metabolites is presented. In conclusion, some features of CLS extraction from natural sources and the main methods of their analysis are discussed. It is concluded that in the future, with the accumulation of sufficient experimental and theoretical material, this class of compounds can be considered as prodrugs for the treatment of nosologies with high medical and social significance.

Downloads

Download data is not yet available.

Author Biographies

Mikhail Artemovich Nazlukhanyan, Pyatigorsk Medical and Pharmaceutical Institute - branch of the Federal State Budgetary Educational Institution of Higher Education VolgGMU of the Ministry of Health of Russia

postgraduate student

Anna Gurgenovna Kuregyan, Pyatigorsk Medical and Pharmaceutical Institute – branch of the Federal State Budgetary Educational Institution of Higher Education VolgSMU

Doctor of Pharmaceutical Sciences, Professor in the Department of Pharmaceutical Chemistry

Stanislav Vitalyevich Pechinsky, Pyatigorsk Medical and Pharmaceutical Institute - branch of the Federal State Budgetary Educational Institution of Higher Education VolgGMU of the Ministry of Health of Russia

Candidate of Pharmaceutical Sciences, Associate Professor in the Department of Pharmaceutical Chemistry

References

Abdel-Massih R.M., Debs E., Othman L., Attieh J., Cabrerizo F.M. Frontiers in Microbiology, 2023, vol. 14, arti-cle 1130208. https://doi.org/10.3389/fmicb.2023.1130208.

S"yedin A.V. Farmakognosticheskoye izucheniye rapsa obyknovennogo (Brassica napus L.): avtoref. dis. ... kand. farm. nauk. [Pharmacognostic study of common rape (Brassica napus L.): author's abstract. diss. ... candidate pharm. sciences]. Pyatigorsk, 2014, 24 p. (in Russ.).

Favela-González K.M., Hernández-Almanza A.Y., De la Fuente-Salcido N.M. Journal of Food Biochemistry, 2020, vol. 44, no. 10, article e13414. https://doi.org/10.1111/jfbc.13414.

Grosser K., van Dam N.M. Journal of Visualized Experiments, 2017, vol. 121, article 55425.

Yang W. et al. Plant Physiology and Biochemistry, 2024, article 109224. https://doi.org/10.1016/j.plaphy.2024.109224.

Loitongbam A. et al. Molecular Biology Reports, 2024, vol. 51, no. 1, 1079. https://doi.org/10.1007/s11033-024-10002-z.

Muntean D., Stefanu M.N., Cata A., Buda V., Danciu C., Banica R., Pop R., Licker M., Ienascu I.M.C. Symmetry, 2021, vol. 13, pp. 893–908. https://doi.org/10.3390/sym13050893.

Ienaşcu I.M.C., Căta A., Chis A.A., Ştefănuţ M.N., Sfîrloagă P., Rusu G., Frum A., Arseniu A.M., Morgovan C., Rus L.L., Dobrea C.M. Materials, 2023, vol. 16, no. 8, article 2967. https://doi.org/10.3390/ma16082967.

Clarke D.B. Analytical Methods, 2010, vol. 2, no. 4, pp. 310–325.

Miklavčič Višnjevec A., Tamayo Tenorio A., Steenkjær Hastrup A.C., Hansen N.M.L., Peeters K., Schwarzkopf M. Plants, 2021, vol. 10, no. 11, article 2548. https://doi.org/10.3390/plants10112548.

Cartea M.E., Velasco P. Phytochemistry Reviews, 2008, vol. 7, no. 2, pp. 213–229. https://doi.org/10.1007/s11101-007-9072-2.

Almushayti A.Y. et al. Journal of Chromatography A, 2021, vol. 1643, article 462060. https://doi.org/10.1016/j.chroma.2021.462060.

National Library of Medicine. URL: https://www.ncbi.nlm.nih.gov/.

International Union of Pure and Applied Chemistry. URL: https://iupac.org/.

Cai C., de Vos R.C.H., Qian H., Bucher J., Bonnema G. Journal of Agricultural and Food Chemistry, 2024, vol. 72, no. 28, pp. 16032–16044. https://doi.org/10.1021/acs.jafc.4c02932.

Bacchetti T., Campagna R., Sartini D., Cecati M., Morresi C., Bellachioma L., Martinelli E., Rocchetti G., Lucini L., Ferretti G., Emanuelli M.C. Molecules, 2022, vol. 27, no. 19, article 6488. https://doi.org/10.3390/molecules27196488.

Iwamoto Y., Saito S., Teramoto T., Maruyama-Nakashita A., Kakuta Y. Biochemical and Biophysical Research Com-munications, 2023, vol. 677, pp. 149–154. https://doi.org/10.1016/j.bbrc.2023.08.020.

Iwamoto Y., Saito S., Teramoto T., Maruyama-Nakashita A., Kakuta Y. Biochemical and Biophysical Research Com-munications, 2023, vol. 677, pp. 149–154. https://doi.org/10.1016/j.bbrc.2023.08.020.

Sønderby I.E., Geu-Flores F., Halkier B.A. Trends in Plant Science, 2010, vol. 15, no. 5, pp. 283–290.

Fahey J.W., Zalcmann A.T., Talalay P. Phytochemistry, 2001, vol. 56, no. 1, pp. 5–51.

Field B. et al. Plant Physiology, 2004, vol. 135, no. 2, pp. 828–839.

Grubb C.D., Abel S. Trends in Plant Science, 2006, vol. 11, no. 2, pp. 89–100.

Latxague C., Gardrat C., Coustille J.L., Viaud M.C., Rollin P. Journal of Chromatography A, 1991, vol. 586, no. 1, pp. 166–170. https://doi.org/10.1016/0021-9673(91)80037-h.

Rollin P., Tatibouët A. Comptes Rendus Chimie, 2011, vol. 14, no. 2-3, pp. 194–210.

Cerniauskaite D., Rousseau J., Sackus A., Rollin P., Tatibouët A. European Journal of Organic Chemistry, 2011, pp. 2293–2300.

Prieto M.A., López C.J., Simal-Gandara J. Advances in Food and Nutrition Research, 2019, vol. 90, pp. 305–350. https://doi.org/10.1016/bs.afnr.2019.02.008.

Mitreiter S., Gigolashvili T. Journal of Experimental Botany, 2021, vol. 72, no. 1, pp. 70–91. https://doi.org/10.1093/jxb/eraa479.

Liu Y., Rossi M., Liang X., Zhang H., Zou L., Ong C.N. Metabolites, 2020, vol. 10, no. 8, article 313. https://doi.org/10.3390/metabo10080313.

Dzhabrailov Yu.M. Vestnik Kurskoy gosudarstvennoy sel'skokhozyaystvennoy akademii, 2022, no. 9, pp. 108–112. (in Russ.).

Chowdhury M., Kiraga S., Islam M.N., Ali M., Reza M.N., Lee W.-H., Chung S.-O. Foods, 2021, vol. 10, no. 7, 1524. https://doi.org/10.3390/foods10071524.

Shirakawa M., Hara-Nishimura I. Plant & Cell Physiology, 2018, vol. 59, no. 7, pp. 1309–1316. https://doi.org/10.1093/pcp/pcy082.

Ressurreição S., Salgueiro L., Figueirinha A. Molecules, 2024, vol. 29, no. 11, article 2612. https://doi.org/10.3390/molecules29112612.

Ramezani R., Azadbakht L., Benisi-Kohansal S., Esmaillzadeh A., Milajerdi A. International Journal of Preventive Medicine, 2024, vol. 15, article 56. https://doi.org/10.4103/ijpvm.ijpvm_129_23.

Zhang G., Li Y., Sun Y. European Journal of Nutrition, 2024, vol. 63, no. 7, pp. 2421–2435. https://doi.org/10.1007/s00394-024-03472-1.

Yu P., Yu L., Lu Y. Frontiers in Nutrition, 2022, vol. 9, article 944451. https://doi.org/10.3389/fnut.2022.944451.

Flori L., Montanaro R., Pagnotta E., Ugolini L., Righetti L., Martelli A., Di Cesare Mannelli L., Ghelardini C., Bran-caleone V., Testai L., Calderone V. Biomedicines, 2023, vol. 11, no. 12, article 3281. https://doi.org/10.3390/biomedicines11123281.

Citi V., Corvino A., Fiorino F., Frecentese F., Magli E., Perissutti E., Santagada V., Brogi S., Flori L., Gorica E., Tes-tai L., Martelli A., Calderone V., Caliendo G., Severino B. Journal of Advanced Research, 2020, vol. 27, pp. 41–53. https://doi.org/10.1016/j.jare.2020.02.017.

Rathore A., Sharma A.K., Murti Y. et al. Current Cardiology Reviews, 2024, vol. 20, no. 4, article e290424229484. https://doi.org/10.2174/157340303X278881240405044328.

Vega-Galvez A., Pasten A., Uribe E. et al. Foods, 2024, vol. 13, no. 19, article 3162. https://doi.org/10.3390/foods13193162.

Nguyen V.P.T., Stewart J., Lopez M., Ioannou I., Allais F. Molecules, 2020, vol. 25, no. 19, article 4537. https://doi.org/10.3390/molecules25194537.

Liu F., Bai Q., Tang W. et al. Frontiers in Neuroscience, 2024, vol. 18, article 1505153. https://doi.org/10.3389/fnins.2024.1505153.

Brokowska J., Herman-Antosiewicz A., Hać A. European Journal of Nutrition, 2024, vol. 64, no. 1, 46. https://doi.org/10.1007/s00394-024-03539-z.

Otoo R.A., Allen A.R. Molecules, 2023, vol. 28, no. 19, article 6902. https://doi.org/10.3390/molecules28196902.

Qu Y., Li X., Li J., Yu Z., Shen R. Journal of the Science of Food and Agriculture, 2024, vol. 104, no. 14, pp. 8769–8779. https://doi.org/10.1002/jsfa.13703

Tasnim F., Hosen M.E., Haque M.E., Islam A., Nuryay M.N., Mawya J., Akter N., Yesmin D., Hossain M.M., Rah-man N., Mahmudul Hasan B.M., Hassan M.N., Islam M.M., Khalekuzzaman M. In Silico Pharmacology, 2024, vol. 12, no. 2, article 95. https://doi.org/10.1007/s40203-024-00276-3.

Sanchez-Guzman X., Alvarez-Dominguez L., Ramirez-Torres M.F., Montes-Alvarado J.B., Garcia-Ibanez P., Moreno D.A., Dominguez F., Maycotte P. Journal of Medicinal Food, 2024. https://doi.org/10.1089/jmf.2023.0199.

Mecca M., Sichetti M., Giuseffi M., Giglio E., Sabato C., Sanseverino F., Marino G. Nutrients, 2024, vol. 16, no. 12, article 1883. https://doi.org/10.3390/nu16121883.

Liu P., Zhang B., Li Y., Yuan Q. Molecular Medicine, 2024, vol. 30, no. 1, article 94. https://doi.org/10.1186/s10020-024-00842-7.

Harvey F., Aromokunola B., Montaut S., Yang G. International Journal of Molecular Sciences, 2024, vol. 25, no. 2, 696. https://doi.org/10.3390/ijms25020696.

Blažević I., Montaut S., Burčul F. et al. Phytochemistry, 2020, vol. 169, article 112100. https://doi.org/10.1016/j.phytochem.2019.112100.

Zhao Y., Zhang Y., Yang H., Xu Z., Li Z., Zhang Z., Zhang W., Deng J. Food Chemistry, 2024, vol. 443, arti-cle 138517. https://doi.org/10.1016/j.foodchem.2024.138517.

Li S., Chen M., Wu H., Li Y., Tollefsbol T.O. Cancer Prevention Research, 2020, vol. 13, no. 5, pp. 449–462. https://doi.org/10.1158/1940-6207.CAPR-19-0491.

Quizhpe J., Ayuso P., Rosell M.L.Á., Peñalver R., Nieto G. Foods, 2024, vol. 13, no. 21, article 3513. https://doi.org/10.3390/foods13213513.

Chen L., Chan L.S., Lung H.L., Yip T.T.C., Ngan R.K.C., Wong J.W.C., Lo K.W., Ng W.T., Lee A.W.M., Tsao G.S.W., Lung M.L., Mak N.K. Phytomedicine, 2019, vol. 63, article 153058. https://doi.org/10.1016/j.phymed.2019.153058.

Coscueta E.R., Sousa A.S., Reis C.A., Pintado M.M. Molecules, 2022, vol. 27, no. 3, article 794. https://doi.org/10.3390/molecules27030794.

Dinh T.N., Parat M.O., Ong Y.S., Khaw K.Y. Pharmacological Research, 2021, vol. 169, article 105666. https://doi.org/10.1016/j.phrs.2021.105666.

Nouchi R., Kawata N.Y.S., Saito T., Nouchi H., Kawashima R. Nutrients, 2023, vol. 15, no. 21, 4608. https://doi.org/10.3390/nu15214608.

Wu Y.Y., Xu Y.M., Lau A.T.Y. Molecules, 2021, vol. 26(24), 7512. https://doi.org/10.3390/molecules26247512.

McAlpine P.L., Fernández J., Villar C.J., Lombó F. Nutrients, 2024, vol. 16, no. 6, article 802. https://doi.org/10.3390/nu16060802.

Connolly E.L., Sim M., Travica N. et al. Frontiers in Pharmacology, 2021, vol. 12, article 767975. https://doi.org/10.3389/fphar.2021.767975.

Pernomian L., Blascke de Mello M.M., Parente J.M. et al. Life Sciences, 2024, vol. 351, 122819. https://doi.org/10.1016/j.lfs.2024.122819.

Citi V., Corvino A., Fiorino F. et al. Journal of Advanced Research, 2020, vol. 27, no. 1, pp. 41–53. https://doi.org/10.1016/j.jare.2020.02.017.

Panahi Kokhdan E., Khodabandehloo H., Ghahremani H., Doustimotlagh A.H. Evidence-Based Complementary and Alternative Medicine, 2021, vol. 2021, article 5516450. https://doi.org/10.1155/2021/5516450.

Das G., Tantengco O.A.G., Tundis R. et al. Plants, 2022, vol. 11, no. 17, article 2290. https://doi.org/10.3390/plants11172290.

Testai L., Pagnotta E., Piragine E. et al. Phytotherapy Research, 2022, vol. 36, no. 6, pp. 2616–2627. https://doi.org/10.1002/ptr.7479.

Kamal R.M., Abdull Razis A.F., Mohd Sukri N.S. et al. Molecules, 2022, vol. 27, no. 3, article 624. https://doi.org/10.3390/molecules27030624.

Tarar A., Peng S., Cheema S., Peng C.A. Bioengineering, 2022, vol. 9, no. 9, 470. https://doi.org/10.3390/bioengineering9090470.

Hashimoto T., Yoshioka S., Iwanaga S., Kanazawa K. Molecular Nutrition & Food Research, 2023, vol. 67, no. 21, article e2300185. https://doi.org/10.1002/mnfr.202300185.

Luo S., An R., Zhou H., Zhang Y., Ling J., Hu H., Li P. Food Chemistry, 2022, vol. 383, 132624. https://doi.org/10.1016/j.foodchem.2022.132624.

Kyriakou S., Trafilis D.T., Deligiorgi M.V., Franco R., Pappa A., Panayiotidis M.I. Antioxidants, 2022, vol. 11, no. 4, 642. https://doi.org/10.3390/antiox11040642.

Narra F., Piragine E., Benedetti G. et al. Comprehensive Reviews in Food Science and Food Safety, 2024, vol. 23, no. 6, article e13426. https://doi.org/10.1111/1541-4337.13426.

Xu Q., Monagas M.J., Kassymbek Z.K., Belsky J.L. Journal of Pharmaceutical and Biomedical Analysis, 2021, vol. 199, 114063. https://doi.org/10.1016/j.jpba.2021.114063.

Kijkuokool P., Stepanov I., Ounjaijean S. et al. Life, 2024, vol. 14, no. 9, article 1204. https://doi.org/10.3390/life14091204.

Bojorquez-Rodriguez E.M., Guajardo-Flores D., Jacobo-Velázquez D.A., Serna-Saldívar S.O. Horticulturae, 2022, vol. 8, no. 11, 1090. https://doi.org/10.3390/horticulturae8111090.

Đulović A., Burčul F., Čikeš Čulić V., Rollin P., Blažević I. Molecules, 2023, vol. 28, no. 4, 1657. https://doi.org/10.3390/molecules28041657.

Pagliari S., Giustra C.M., Magoni C. et al. Front Nutr., 2022, vol. 9, 901944. https://doi.org/10.3389/fnut.2022.901944.

Ferreira S.S., Monteiro F., Passos C.P. et al. Food Research International, 2020, vol. 132, 109055. https://doi.org/10.1016/j.foodres.2020.109055.

Yu X., He H., Zhao X., Liu G., Hu L., Cheng B., Wang Y. Molecules, 2021, vol. 27, no. 1, article 231. https://doi.org/10.3390/molecules27010231.

Manivannan A., Israni B., Luck K. et al. Frontiers in Plant Science, 2021, vol. 12, article 671286. https://doi.org/10.3389/fpls.2021.671286.

Mocniak L.E., Elkin K.R., Dillard S.L., Bryant R.B., Söder K.J. Talanta, 2023, vol. 251, 123814. https://doi.org/10.1016/j.talanta.2022.123814.

Miklavčič Višnjevec A., Tamayo Tenorio A., Steenkjær Hastrup A.C., Hansen N.M.L., Peeters K., Schwarzkopf M. Plants, 2021, vol. 10, no. 11, 2548. https://doi.org/10.3390/plants10112548.

Pardini A., Tamasi G., De Rocco F. et al. Food Chemistry, 2021, vol. 355, 129634. https://doi.org/10.1016/j.foodchem.2021.129634.

Published
2026-02-18
How to Cite
1. Nazlukhanyan M. A., Kuregyan A. G., Pechinsky S. V. GLUCOSINOLATES: CHEMICAL CHARACTERISTICS AND BIOLOGICAL ACTIVITY (REVIEW) // Chemistry of plant raw material, 2026. № 1. P. 5-24. URL: https://journal.asu.ru/cw/article/view/16985.
Section
Reviews