NODE MATERIALS DERIVED FROM MARINE SEAWEEDS AND SEAGRASSES FOR METAL-ION BATTERIES: PROBLEMS AND ACHIEVEMENTS
UDC 544.6.076.324.1; 661.666.1; 546.05
Abstract
Carbon materials are considered and used as electroactive components for negative electrodes of various metal-ion batteries. The advantages of carbon materials are availability and low cost of raw materials for their production, which provides benefits in scaling technologies based on them. Recently, biomass has been considered among the most promising sources of carbon, since it is a renewable and available resource. The review summarizes and systematizes the results of studies over the last decade on carbon materials and carbon-based composites derived from the biomass of seaweeds and seagrasses for negative electrodes of the metal-ion (lithium-, sodium-, potassium-ion) batteries. An analysis of researches devoted to the production and study of such anode materials from seaweed-extracted polysaccharides was also performed. The relationship between the conditions for producing carbon materials and carbon-based composites, their characteristics (specific surface area, porosity, distance between graphene layers, degree of ordering, etc.) and electrochemical properties for metal-ion batteries (initial Coulombic efficiency, reversible capacity, rate performance, etc.) is analyzed. Methods for modifying such materials to improve their functional properties are discussed.
Downloads
References
Nekahi A., Dorri M., Rezaei M., Bouguern M.D., Anil Kumar M.R., Li X., Deng S., Zaghib K. Batteries, 2024, vol. 10, article 279. https://doi.org/10.3390/batteries10080279.
Stenina I.A., Sobolev A.N., Kulova T.L., Desyatov A.V., Yaroslavtsev A.B. Zhurnal neorganicheskoy khimii, 2022, vol. 67, pp. 829–835. https://doi.org/10.31857/S0044457X2206023X. (in Russ.).
Ivanishchev A.V., Ivanishcheva I.A., Lee S., Kim J.-J., Kim Y.-J., Bae C., Nam S.-C., Song J.-H. Journal of Electroanalytical Chemistry, 2023, vol. 950, article 117864. https://doi.org/10.1016/j.jelechem.2023.117864.
Qiu Z., Cao F., Pan G., Li C., Chen M., Zhang Y., He X., Xia Y., Xia X., Zhang W. ChemPhysMater, 2023, vol. 2, pp. 267–281. https://doi.org/10.1016/j.chphma.2023.02.002.
Taskin O.S., Hubble D., Zhu T., Liu G. Green Chemistry, 2021, vol. 23, pp. 7890–7901. https://doi.org/10.1039/D1GC01814K.
Abbasi T., Abbasi S.A. Renewable and Sustainable Energy Reviews, 2010, vol. 14, pp. 919–937. https://doi.org/10.1016/j.rser.2009.11.006.
Xia Y., Wang L., Li X., Liao T., Zhai J., Wang X., Huo K. Battery Energy, 2024, vol. 3, article 20240015. https://doi.org/10.1002/bte2.20240015.
Evseeva N.V., Matyushkin V.B., Berezina M.O., Melnik R.A., Levitsky A.L., Vlasov D.O., Saenko E.M., Zhiltsova L.V., Belyj M.N., Dulenin A.A., Prokhorova N.Y., Sologub D.O., Botnev D.A. Trudy VNIRO, 2024, vol. 195, pp. 232–248. https://doi.org/10.36038/2307-3497-2024-195-232-248.
Kulova T.L., Skundin A.M. Electrochemical Energetics, 2023, vol. 23, pp. 111–120. https://doi.org/10.18500/1608-4039-2023-23-3-111-120.
Hong Z., Tian H., Fang Z., Luo Y., Wu H., Zhao F., Li Q., Fan S., Wang J. ChemElectroChem, 2024, vol. 11, article e202300759. https://doi.org/10.1002/celc.202300759.
Izatt S.R., Izatt R.M., Bruening R.L., Krakowiak K.E., Navarro L. IPMI Journal, 2024, vol. 4, pp. 78–115.
Xu J., Dou Y., Wei Z., Ma J., Deng Y., Li Y., Liu H., Dou S. Advanced Science, 2017, vol. 4, article 1700146. https://doi.org/10.1002/advs.201700146.
Zhao L., Zhang T., Li W., Li T., Zhang L., Zhang X., Wang Z. Engineering, 2023, vol. 24, pp. 172–183. https://doi.org/10.1016/j.eng.2021.08.032.
Kim E.J., Kumar P.R., Gossage Z.T., Kubota K., Hosaka T., Tatara R., Komaba S. Chemical Science, 2022, vol. 13, pp. 6121–6158. https://doi.org/10.1039/D2SC00946C.
Gupta P., Pushpakanth S., Haider M.A., Basu S. ACS Omega, 2022, vol. 7, pp. 5605–5614. https://doi.org/10.1021/acsomega.1c05794.
Grigor'yeva O.Yu., Kulova T.L., Skundin A.M. Elektrokhimicheskaya energetika, 2016, vol. 16, pp. 30–33. https://doi.org/10.18500/1608-4039-2016-1-30-33. (in Russ.).
Marom R., Amalraj S.F., Leifer N., Jacob D., Aurbach D. Journal of Materials Chemistry, 2011, vol. 21, pp. 9938–9954. https://doi.org/10.1039/c0jm04225k.
Li S., Wang K., Zhang G., Li S., Xu Y., Zhang X., Zhang X., Zheng S., Sun X., Ma Y. Advanced Functional Materials, 2022, vol. 32, article 2200796. https://doi.org/10.1002/adfm.202200796.
Yaroslavtsev A.B., Kulova T.L., Skundin A.M. Uspekhi khimii, 2015, vol. 84, pp. 826–852. https://doi.org/10.1070/RCR4497. (in Russ.).
Ge P., Fouletier M. Solid State Ionics, 1988, vol. 28-30, pp. 1172–1175. https://doi.org/10.1016/0167-2738(88)90351-7.
Li X., Li J., Ma L., Yu C., Ji Z., Pan L., Mai W. Energy & Environmental Materials, 2022, vol. 5, pp. 458–469. https://doi.org/10.1002/eem2.12194.
Bobyleva Z.V. Negrafitiziruyemyy uglerod kak anodnyy material dlya natriy-ionnykh akkumulyatorov: dis. ... kand. khim. nauk. [Non-graphitizable carbon as anode material for sodium-ion batteries: diss. ... Cand. of Chemical Sciences]. Moscow, 2022, 113 p. (in Russ.).
Saurel D., Orayech B., Xiao B., Carriazo D., Li X., Rojo T. Advanced Energy Materials, 2018, vol. 8, article 1703268. https://doi.org/10.1002/aenm.201703268.
Stevens D.A., Dahn J.R. Journal of The Electrochemical Society, 2001, vol. 148, article A803. https://doi.org/10.1149/1.1379565.
Dahn J.R., Zheng T., Liu Y., Xue J.S. Science, 1995, vol. 270, pp. 590–593. https://doi.org/10.1126/science.270.5236.590.
Abramova E.N., Bobyleva Z.V., Drozhzhin O.A., Abakumov A.M., Antipov E.V. Russian Chemical Reviews, 2024, vol. 93, article RCR5100. https://doi.org/10.59761/RCR5100.
Beda A., Le Meins J.-M., Taberna P.-L., Simon P., Matei Ghimbeu C. Sustainable Materials and Technologies, 2020, vol. 26, article e00227. https://doi.org/10.1016/j.susmat.2020.e00227.
Lakienko G.P., Bobyleva Z.V., Apostolova M.O., Sultanova Y.V., Dyakonov A.K., Zakharkin M.V., Sobolev N.A., Alekseeva A.M., Drozhzhin O.A., Abakumov A.M., Antipov E.V. Batteries, 2022, vol. 8, article 131. https://doi.org/10.3390/batteries8100131.
Liu P., Li Y., Hu Y.-S., Li H., Chen L., Huang X. Journal of Materials Chemistry A, 2016, vol. 4, pp. 13046–13052. https://doi.org/10.1039/C6TA04877C.
Moon H., Innocenti A., Liu H., Zhang H., Weil M., Zarrabeitia M., Passerini S. ChemSusChem, 2023, vol. 16, article e202201713. https://doi.org/10.1002/cssc.202201713.
Osman S., Peng C., Li F., Chen, H., Shen J., Zhong Z., Huang W., Xue D., Liu J. Advanced Science, 2022, vol. 9, article 2205575. https://doi.org/10.1002/advs.202205575.
Wang P., Zhu X., Wang Q., Xu X., Zhou X., Bao J. Journal of Materials Chemistry A, 2017, vol. 5, pp. 5761–5769. https://doi.org/10.1039/C7TA00639J.
Ouyang H., Ma Y., Gong Q., Li C., Huang J., Xu Z., Wei B. Journal of Alloys and Compounds, 2020, vol. 823, article 153862. https://doi.org/10.1016/j.jallcom.2020.153862.
Ouyang H., Gong Q., Li C., Huang J., Xu Z. Materials Letters, 2019, vol. 235, pp. 111–115. https://doi.org/10.1016/j.matlet.2018.10.020.
Nowak A.P., Lisowska-Oleksiak A. International Journal of Electrochemical Science, 2014, vol. 9, pp. 3715–3724. https://doi.org/10.1016/S1452-3981(23)08044-6.
Senthil C., Park J.W., Shaji N., Sim G.S., Lee C.W. Journal of Energy Chemistry, 2022, vol. 64, pp. 286–295. https://doi.org/10.1016/j.jechem.2021.04.060.
Cui J., Xi Y., Chen S., Li D., She X., Sun J., Han W., Yang D., Guo S. Advanced Functional Materials, 2016, vol. 26, pp. 8487–8495. https://doi.org/10.1002/adfm.201603933.
Yu W., Wang H., Liu S., Mao N., Liu X., Shi J., Liu W., Chen S., Wang X. Journal of Materials Chemistry A, 2016, vol. 4, pp. 5973–5983. https://doi.org/10.1039/C6TA01821A.
Zhao Q., Meng Y., Li J., Xiao D. Applied Surface Science, 2019, vol. 481, pp. 473–483. https://doi.org/10.1016/j.apsusc.2019.03.143.
Cetintasoglu M.E., Taskin O.S., Aksu A., Eryalcin K.M., Keles O., Calgar N. Turkish Journal of Fisheries and Aquatic Sciences, 2024, vol. 24, article TRJFAS26528. https://doi.org/10.4194/TRJFAS26528.
Salimi P., Javadian S., Norouzi O., Gharibi H. Environmental Science and Pollution Research, 2017, vol. 24, pp. 27974–27984. https://doi.org/10.1007/s11356-017-0181-1.
Salimi P., Norouzi O., Pourhoseini S.E.M., Bartocci P., Tavasoli A., Di Maria F., Pirbazari S.M., Bidini G., Fantozzi F. Renewable Energy, 2019, vol. 140, pp. 704–714. https://doi.org/10.1016/j.renene.2019.03.077.
Salimi P., Askari K., Norouzi O., Kamali S. Journal of Electronic Materials, 2019, vol. 48, pp. 951–963. https://doi.org/10.1007/s11664-018-6826-0.
Belmesov A.A., Glukhov A.A., Kayumov R.R., Podlesniy D.N., Latkovskaya E.M., Repina M.A., Ivanov N.P., Tsvetkov M.V., Shichalin O.O. Coatings, 2023, vol. 13, article 2075. https://doi.org/10.3390/coatings13122075.
Zhang J., Zhang L., Yang S., Li D., Xie Z., Wang B., Xia Y., Quan F. Journal of Alloys and Compounds, 2017, vol. 701, pp. 256–261. https://doi.org/10.1016/j.jallcom.2017.01.082.
Wu X., Chen L., Xin S., Yin Y., Guo Y., Kong Q., Xia Y. ChemSusChem, 2010, vol. 3, pp. 703–707. https://doi.org/10.1002/cssc.201000035.
Li D., Lv C., Liu L., Xia Y., She X., Guo S., Yang D. ACS Central Science, 2015, vol. 1, pp. 261–269. https://doi.org/10.1021/acscentsci.5b00191.
Hu H., Cao L., Xu Z., Zhou L., Li J., Huang J. Materials Letters, 2016, vol. 185, pp. 530–533. https://doi.org/10.1016/j.matlet.2016.08.110.
Lu M., Yu W., Shi J., Liu W., Chen S., Wang X., Wang H. Electrochimica Acta, 2017, vol. 251, pp. 396–406. https://doi.org/10.1016/j.electacta.2017.08.131.
Lv C., Xu W., Liu H., Zhang L., Chen S., Yang X., Xu X., Yang D. Small, 2019, vol. 15, article 1900816. https://doi.org/10.1002/smll.201900816.
Sun X., Chen Y., Li Y., Luo F. Nanomaterials, 2022, vol. 13, article 82. https://doi.org/10.3390/nano13010082.
Issatayev N., Kalimuldina G., Nurpeissova A., Bakenov Z. Nanomaterials, 2021, vol. 12, article 22. https://doi.org/10.3390/nano12010022.
Wang T., Sha J., Wang W., Ji Y., Zhang Z.-M. Chinese Chemical Letters, 2023, vol. 34, article 107929. https://doi.org/10.1016/j.cclet.2022.107929.
Ji Y., Wang T., Yao X., Gao J., Chu Y., Sun J., Dong H., Sha J. Journal of Energy Storage, 2025, vol. 106, article 114640. https://doi.org/10.1016/j.est.2024.114640.
Wang T., Liu L., Wei Y., Gao Y., Wang S., Jia D., Zhang W., Sha J. Small, 2024, vol. 20, article 2309809. https://doi.org/10.1002/smll.202309809.
Agostini M., Brutti S., Hassoun J. ACS Applied Materials & Interfaces, 2016, vol. 8, pp. 10850–10857. https://doi.org/10.1021/acsami.6b01407.
Chemezov O.V., Isakov A.V., Apisarov A.P., Brezhestovskiy M.S., Bushkova O.V., Batalov N.N., Zaykov Yu.P., Shashkin A.P. Elektrokhimicheskaya energetika, 2013, vol. 13, pp. 201–204. (in Russ.).
Jin H., Huang Y., Wang C., Ji H. Small Science, 2022, vol. 2, article 2200015. https://doi.org/10.1002/smsc.202200015.
Subalakshmi P., Sivashanmugam A. ChemistrySelect, 2018, vol. 3, pp. 5040–5049. https://doi.org/10.1002/slct.201702197.
Wan S., Liu Q., Chen H., Zhu H., Wang Y., Cao S. Journal of Power Sources, 2022, vol. 542, article 231804. https://doi.org/10.1016/j.jpowsour.2022.231804.
Choi I., Ha S., Kim K.-H. Energies, 2024, vol. 17, article 2646. https://doi.org/10.3390/en17112646.
Zhang H., Fang S., Guo M., Fang Z., Qi L., Guo L., Qin Y., Bao H. Journal of Energy Storage, 2024, vol. 82, article 110584. https://doi.org/10.1016/j.est.2024.110584.
Chen J., Mu H., Ding J., Zhang Y., Wang W., Wang G. Nanoscale, 2022, vol. 14, pp. 8374–8384. https://doi.org/10.1039/D2NR01720B.
Beletskii E., Pinchuk M., Snetov V., Dyachenko A., Volkov A., Savelev E., Romanovski V. Chempluschem, 2024, vol. 89, article e202400427. https://doi.org/10.1002/cplu.202400427.
She J., Jin H., Ji H. ChemElectroChem, 2024, vol. 11, article e202300706. https://doi.org/10.1002/celc.202300706.
Lin L., Li M., Yan Y., Tian Y., Qing J., Chen S. Dalton Transactions, 2024, vol. 53, pp. 16871–16878. https://doi.org/10.1039/D4DT02623C.
Li Z., Wu Q., Zhou J., Qin H., Miao L., Liu W., Lei X., Ang Z., Lu A., Mo Z. Journal of Ceramics, 2024, vol. 45, pp. 501–507. https://doi.org/10.13957/j.cnki.tcxb.2024.03.008.
Nowak A.P., Lisowska-Oleksiak A., Wicikowska B., Gazda M. Journal of Solid State Electrochemistry, 2017, vol. 21, pp. 2251–2258. https://doi.org/10.1007/s10008-017-3561-z.
Wang Z., Xu C., Tammela P., Huo J., Strømme M., Edström K., Gustafsson T., Nyholm L. Journal of Materials Chemistry A, 2015, vol. 3, pp. 14109–14115. https://doi.org/10.1039/C5TA02136G.
Yang D., Xiong D., Feng Z., Wen K., Wu K., He M., Feng Y. Ionics, 2023, vol. 29, pp. 505–518. https://doi.org/10.1007/s11581-022-04833-8.
Xu T., Li D., Chen S., Sun Y., Zhang H., Xia Y., Yang D. Chemical Engineering Journal, 2018, vol. 345, pp. 604–610. https://doi.org/10.1016/j.cej.2018.01.099.
Sivagami I.N., Prasanna K., Santhoshkumar P., Jo Y.N., Seo G.Y., Lee C.W. Journal of Alloys and Compounds, 2017, vol. 697, pp. 450–460. https://doi.org/10.1016/j.jallcom.2016.08.177.
Lin Z., Wang G., Xiong X., Zheng J., Ou X., Yang C. Electrochimica Acta, 2018, vol. 269, pp. 225–231. https://doi.org/10.1016/j.electacta.2018.03.010.
Zhang Y., Song X., Huang R., Ye Y., Cheng F., Li H. Journal of Materials Science, 2020, vol. 55, pp. 10740–10750. https://doi.org/10.1007/s10853-020-04680-w.
Yang H., Liu W., Zhang Y., Wang H., Liu S., Chen S., Cheng F., Zhao S., Hao E. ChemElectroChem, 2017, vol. 4, pp. 1411–1418. https://doi.org/10.1002/celc.201700066.
Kang D., Liu Q., Si R., Gu J., Zhang W., Zhang D. Carbon, 2016, vol. 99, pp. 138–147. https://doi.org/10.1016/j.carbon.2015.11.068.
Li D., Yang D., Zhu X., Jing D., Xia Y., Ji Q., Cai R., Li H., Che Y. Journal of Materials Chemistry A, 2014, vol. 2, pp. 18761–18766. https://doi.org/10.1039/C4TA03052D.
Lv C., Yang X., Umar A., Xia Y., Jia Y., Shang L., Zhang T., Yang D. Journal of Materials Chemistry A, 2015, vol. 3, pp. 22708–22715. https://doi.org/10.1039/C5TA06393K.
Liu L., Yang X., Lv C., Zhu A., Zhu X., Guo S., Chen C., Yang D. ACS Applied Materials & Interfaces, 2016, vol. 8, pp. 7047–7053. https://doi.org/10.1021/acsami.5b12427.
Zhang T., Zhu C., Shi Y., Li Y., Zhu S., Zhang D. Materials Letters, 2017, vol. 205, pp. 10–14. https://doi.org/10.1016/j.matlet.2017.06.020.
Salimi P., Norouzi O., Pourhosseini S.E.M. Journal of Alloys and Compounds, 2019, vol. 786, pp. 930–937. https://doi.org/10.1016/j.jallcom.2019.02.048.
Li D., Yang D., Yang X., Wang Y., Guo Z., Xia Y., Sun S., Guo S. Angewandte Chemie International Edition, 2016, vol. 55, pp. 15925–15928. https://doi.org/10.1002/anie.201610301.
Li D., Sun Y., Chen S., Yao J., Zhang Y., Xia Y., Yang D. ACS Applied Materials & Interfaces, 2018, vol. 10, pp. 17175–17182. https://doi.org/10.1021/acsami.8b03059.
Liu H., Lv C., Chen S., Song X., Liu B., Sun J., Zhang H., Yang D., She X., Zhao X. Journal of Alloys and Compounds, 2019, vol. 795, pp. 54–59. https://doi.org/10.1016/j.jallcom.2019.04.213.
Wang Y., Liu M., Liu H., Ding J., Wang T., Dong J., Wang B., Tian X., Xia Y. Journal of Alloys and Compounds, 2023, vol. 952, article 169908. https://doi.org/10.1016/j.jallcom.2023.169908.
Zhang Y., He T., Liu G., Zu L., Yang J. Nanoscale, 2017, vol. 9, pp. 10059–10066. https://doi.org/10.1039/C7NR03187D.
Guo R., Li D., Lv C., Wang Y., Zhang H., Xia Y., Yang D., Zhao X. Electrochimica Acta, 2019, vol. 299, pp. 72–79. https://doi.org/10.1016/j.electacta.2019.01.011.
Nithya C. Metal Phosphates and Phosphonates. Fundamental to Advanced Emerging Applications. Springer; Cham, Switzerland, 2023, pp. 283–299. https://doi.org/10.1007/978-3-031-27062-8_16.
Xu S., Dong H., Yang D., Wu C., Yao Y., Rui X., Chou S., Yu Y. ACS Central Science, 2023, vol. 9, pp. 2012–2035. https://doi.org/10.1021/acscentsci.3c01022.
Yagudin L.D., Zhukov A.V., Chizhevskaya S.V. Uspekhi v khimii i khimicheskoy tekhnologii, 2022, vol. 36, pp. 55–57. (in Russ.).
Makhov S.V., Ushakov A.V., Ivanishchev A.V., Gridina N.A., Churikov A.V., Gamayunova I.M., Volynskii V.V., Klyuev V.V. Electrochemical Energetics, 2017, vol. 17, pp. 99–119. https://doi.org/10.18500/1608-4039-2017-17-2-99-119.
Rui X.H., Yesibolati N., Chen C.H. Journal of Power Sources, 2011, vol. 196, pp. 2279–2282. https://doi.org/10.1016/j.jpowsour.2010.09.024
Zhang X., Kühnel R.-S., Schroeder M., Balducci A. Journal of Materials Chemistry A, 2014, vol. 2, pp. 17906–17913. https://doi.org/10.1039/C4TA03845B.
Pan A., Liu J., Zhang J.-G., Xu W., Cao G., Nie Z., Arey B.W., Liang S. Electrochemistry Communications, 2010, vol. 12, pp. 1674–1677. https://doi.org/10.1016/j.elecom.2010.09.014.
Wei C., He W., Zhang X., Wang Y. Journal of Materials Science: Materials in Electronics, 2016, vol. 27, pp. 11814–11824. https://doi.org/10.1007/s10854-016-5322-7.
Copyright (c) 2026 Chemistry of plant raw material

This work is licensed under a Creative Commons Attribution 4.0 International License.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.







