STRUCTURAL FEATURES AND ANTIOXIDANT ACTIVITY OF β-GLUCANS FROM SELECTED EAST SIBERIAN BARLEY OBTAINED BY ACID-FREE EXTRACTION

UDC 547.455.526, 544.478

  • Yuriy Nikolaevich Malyar Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences; Siberian Federal University Email: yumalyar@gmail.com
  • Valentina Sergeevna Borovkova Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences; Siberian Federal University Email: bing0015@mail.ru
  • Sergey Aleksandrovich Gerasimov Krasnoyarsk Research Institute of Agriculture, Federal Research Center of the Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences Email: g-s-a2009@yandex.ru
  • Margarita Ivanovna Glazyrina Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences; Siberian Federal University Email: margo.glazyr@mail.ru
  • Alexey Gennadievich Lipshin Krasnoyarsk Research Institute of Agriculture, Federal Research Center of the Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences Email: alipshin@mail.ru
Keywords: barley, β-glucan, acid-free extraction, gel permeation chromatography, antioxidant activity

Abstract

This study aims to elucidate the structural properties of β-glucans, biological macromolecules with enormous potential, and to evaluate their antioxidant activity. The study found that genotype exerts the greatest influence on β-glucan content in grain, accounting for 78.0% of the significance. During the studies on β-glucan content in grain revealed a significant advantage for almost all studied varieties compared to the Takmak standard. To study the structural characteristics of β-glucans, a solid grain product was obtained from the Acha spring barley species. Using gel permeation chromatography method, it was determined that, regardless of the drying method of the reaction mixture (thermal/lyophilization), the samples characterized by high purity and homogeneous structure were obtained. Meanwhile, the molecular weights of the β-glucan samples obtained after the oven drying and lyophilization were 2836 and 2846 g/mol, accordingly. Furthermore, the evaluated antioxidant activity for the obtained samples revealed the significantly efficient free radical scavenging capacity, with reaching its maximum value - 40.56±0.46% with 5 mg/ml sample concentration. Thus, the determination of the β-glucan content depended of the varying characteristics of barley species, the conditions of growth development of efficient methods for isolation, to undoubtedly ensure the production of derivative characterized by high purity that possibly could be applied in various fields.

Downloads

Download data is not yet available.

Author Biographies

Yuriy Nikolaevich Malyar, Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences; Siberian Federal University

Candidate of Chemical Sciences, Senior Researcher

Valentina Sergeevna Borovkova, Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences; Siberian Federal University

Candidate of Chemical Sciences, Researcher

Sergey Aleksandrovich Gerasimov, Krasnoyarsk Research Institute of Agriculture, Federal Research Center of the Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences

Doctor of Agricultural Sciences, Leading Researcher, Head of Laboratory

Margarita Ivanovna Glazyrina, Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch Russian Academy of Sciences; Siberian Federal University

Engineer

Alexey Gennadievich Lipshin, Krasnoyarsk Research Institute of Agriculture, Federal Research Center of the Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences

Director, Candidate of Agricultural Sciences, Leading Researcher

References

Ahmad A., Anjum F.M., Zahoor T., Nawaz H., Din A. International journal of food science & technology, 2009, vol. 44, no. 1, pp. 181–187. https://doi.org/10.1111/j.1365-2621.2008.01721.x.

Loskutov I.G., Polonskiy V.I. Sel'skokhozyaystvennaya biologiya, 2017, vol. 52, no. 4, pp. 646–657. https://doi.org/10.15389/agrobiology.2017.4.646rus. (in Russ.).

Poppitt S.D., Drunen J.D.V., McGill A.T., Mulvey T.B., Leahy F.E. Asia Pacific Journal of Clinical Nutrition, 2007, vol. 16(1), pp. 16–24. https://doi.org/10.6133/apjcn.2007.16.1.03.

Özen S., Ünlü A., Özbek H.N., Göğüş F. Food and Bioprocess Technology, 2024, vol. 17, no. 12, pp. 4781–4793. https://doi.org/10.1007/s11947-024-03420-1.

Mio K., Goto, Y., Matsuoka T., Komatsu M., Ishii C., Yang J., Fukuda S. Science of Food, 2024, vol. 8, no. 1, 69. https://doi.org/10.1038/s41538-024-00311-9.

Wang Y., Ames N.P., Tun H.M., Tosh S.M., Jones P.J., Khafipour E. Frontiers in microbiology, 2016, vol. 7, 129. https://doi.org/10.3389/fmicb.2016.00129.

Bai J., Wang J., Fan M., Li Y., Huang L., Wang L. Food & Function, 2024, vol. 15, pp. 7794–7811. https://doi.org/10.1039/d4fo00775a.

Aoe S., Mio K., Yamanaka C., Kuge T. Nutrients, 2020, vol. 13, no. 1, 130. https://doi.org/10.3390/nu13010130.

Zhu F., Du B., Xu B. Food Hydrocolloids, 2016, vol. 52, pp. 275–288. https://doi.org/10.1016/j.foodhyd.2015.07.003.

Chugunova O.V. i dr. Vestnik KrasGAU, 2023, no. 8, pp. 184–193. https://doi.org/10.36718/1819-4036-2023-8-184-193. (in Russ.).

Popov V.S., Konarev A.V., Kovaleva O.N., Kon'kova N.G., Khoreva V.I. Trudy po prikladnoy botanike, genetike i selektsii, 2024, vol. 184, no. 4, pp. 45–52. https://doi.org/10.30901/2227-8834-2023-4-45-52. (in Russ.).

Aktas-Akyildiz E., Sibakov J., Nappa M., Hytönen E., Koksel H.A.M.I.T., Poutanen K. Journal of Cereal Science, 2018, vol. 81, pp. 60–68. https://doi.org/10.1016/j.jcs.2018.03.007.

Ahmad M., Gani A., Shah A., Gani A., Masoodi F.A. Carbohydrate polymers, 2016, vol. 153, pp. 696–702. https://doi.org/10.1016/j.carbpol.2016.07.022.

Chen L., Cui C., Wang Z., Che F., Chen Z., Feng S. Molecules, 2024, vol. 29, 684. https://doi.org/10.3390/molecules29030684.

Polonskiy V.I., Surin N.A., Gerasimov S.A. i dr. Trudy po prikladnoy botanike, genetike i selektsii, 2021, vol. 182, no. 1, pp. 48–58. https://doi.org/10.30901/2227-8834-2021-1-48-58. (in Russ.).

Surin N.A., Lyakhova N.Ye., Gerasimov S.A., Lipshin A.G. Dostizheniya nauki i tekhniki APK, 2018, vol. 32, no. 5, pp. 41–44. https://doi.org/10.24411/0235-2451-2018-10510. (in Russ.).

Borovkova V.S., Malyar Y.N., Sudakova I.G. et al. Molecules, 2022, vol. 27, 266. https://doi.org/10.3390/molecules27010266

Borovkova V.S., Malyar Y.N., Sudakova I.G. et al. Polymers, 2022, vol. 14, 4521. https://doi.org/10.3390/polym14214521.

Gerasimov S.A., Polonskiy V.I., Sumina A.V. i dr. Khimiya rastitel'nogo syr'ya, 2020, no. 2, pp. 65–71. https://doi.org/10.14258/jcprm.2020025515. (in Russ.).

Hang A., Obert D., Gironella A.I.N., Burton C.S. Crop. Science, 2007, vol. 47, no. 4, pp. 1754–1760. https://doi.org/10.2135/cropsci2006.06.0429.

Rey J.I., Hayes P.M., Petrie S.E., Corey A. et al. Crop. Science, 2009, vol. 49(1), pp. 347–355. https://doi.org/10.2135/cropsci2008.03.0184.

Li Q., Liu J., Zhai H., Zhang Z., Xie R., Xiao F., Pan Z. Carbohydrate Polymers, 2023, vol. 302, 120405. https://doi.org/10.1016/j.carbpol.2022.120405.

Published
2025-12-12
How to Cite
1. Malyar Y. N., Borovkova V. S., Gerasimov S. A., Glazyrina M. I., Lipshin A. G. STRUCTURAL FEATURES AND ANTIOXIDANT ACTIVITY OF β-GLUCANS FROM SELECTED EAST SIBERIAN BARLEY OBTAINED BY ACID-FREE EXTRACTION // Chemistry of plant raw material, 2025. № 4. P. 142-150. URL: https://journal.asu.ru/cw/article/view/18190.
Section
Biopolymers of plants