OBTAINING, COMPOSITION AND PROPERTIES OF CARBON-CONTAINING MATERIALS FROM PLANT RAW

UDC 661.183.2

  • Ol'ga Dmitriyevna Aref'yeva Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University Email: arefeva.od@dvfu.ru
  • Lyudmila Alekseyevna Zemnukhova Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences Email: LAZ@ich.dvo.ru
  • Anna Vasil'yevna Kovekhova Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University Email: kovekhova.av@dvfu.ru
  • Nataliya Pavlovna Morgun Far Eastern Federal University Email: morgun.np@dvfu.ru
  • Mikhail Aleksandrovich Tsvetnov Far Eastern Federal University Email: tsvetnov.ma@dvfu.ru
Keywords: rice husk, sunflower hull, soybean hull, rice straw, cedar shell, carbon-containing materials, composition, physical-chemical properties

Abstract

In this work, we obtained samples of carbon-containing materials from fibrous residues of rice husks and straw, husks of soybean and sunflower, cedar shells at temperatures of 300, 400, and 500 °С. The ash content (3.0–9.3%), the content of water-soluble substances (1.2–7.6%), the mass fraction of moisture (3.0–6.2%), and the pH values of the aqueous extract (5.4– 8.8) and bulk density (66–481 kg/m3) were determined. The IR spectra of carbon-containing materials from plant materials contain more pronounced bands of oxygen-containing functional groups in comparison with medical preparations and BAH coal. The samples are in an X-ray amorphous state, and with increasing firing temperature, the degree of carbon ordering networks increases. All samples have a layered fiber structure, which differs depending on the type of raw material and temperature. The sorption activity was studied with the respect to iodine (7.6–58.4%), methylene blue (4.2–35.8 mg/g) and methyl orange (5.2–64.4 mg/g), which changes depending on the type of raw material and the temperature of carbonization. It was shown that with an increasing firing temperature, the sorption activity of the samples increases. Samples obtained at 500 °C have a high iodine absorption capacity (50.8–58.4%), comparable with BAH activated carbon (60%), and can be used as inexpensive porous carbon materials.

Downloads

Download data is not yet available.

Author Biographies

Ol'ga Dmitriyevna Aref'yeva, Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University

кандидат педагогических наук, доцент базовой кафедры химических и ресурсосберегающих технологий,  научный сотрудник лаборатории химии редких металлов

Lyudmila Alekseyevna Zemnukhova, Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences

доктор химических наук, главный научный сотрудник лаборатории химии редких металлов

Anna Vasil'yevna Kovekhova, Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University

кандидат химических наук,  доцент базовой кафедры химических и ресурсосберегающих технологий,  научный сотрудник лаборатории химии редких металлов

Nataliya Pavlovna Morgun, Far Eastern Federal University

кандидат химических наук, доцент базовой кафедры химических и ресурсосберегающих технологий

Mikhail Aleksandrovich Tsvetnov, Far Eastern Federal University

кандидат химических наук, доцент кафедры физической и аналитической химии

References

Mukhin V.M. Khimiya v interesakh ustoychivogo razvitiya, 2016, no. 3, pp. 309–316. DOI: 10.15372/KhUR20160305. (in Russ.).

Bambalov N.N. Khimiya tverdogo topliva, 2012, no. 5, pp. 6–10. (in Russ.).

Belyayev Ye.Yu. Khimiya rastitel'nogo syr'ya, 2000, no. 2, pp. 5–15. (in Russ.).

Baklanova O.N., Plaksin G.V., Drozdov V.A. Rossiyskiy khimicheskiy zhurnal, 2004, vol. XLVIII, no. 3, pp. 89–94. (in Russ.).

Dmitruk A.F., Lesishina Yu.O., Shendrik T.G., Galushko L.Ya., Gorban' O.A., Chotiy K.Yu. Khimiya rastitel'nogo syr'ya, 2005, no. 4, pp. 71–78. (in Russ.).

Saipov A.A, Ivakhnyuk G.K., Kapitonenko Z.V. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta, 2015, vol. 56, no. 30, pp. 63–65. (in Russ.).

Kabulov A.T., Nechipurenko S.V., Yefremov S.A. Trudy Kol'skogo nauchnogo tsentra RAN Khimiya i materi-alovedeniye, 2015, vol. 31, no. 5, pp. 527–531. (in Russ.).

Borghei M., Laocharoen N., Kibena-Poldsepp E., Johansson L.S., Campbell J., Kauppinen E., Tammeveski K., Ro-jas O.J. Applied Catalysis B: Environmental, 2017, vol. 204, no. 5, pp. 394–402. DOI: 10.1016/j.apcatb.2016.11.029.

Rudkovskiy A.V., Parfenov O.G., Shchipko M.L, Kuznetsov B.N. Khimiya rastitel'nogo syr'ya, 2000, no. 1, pp. 61–68. (in Russ.).

Zhu Y., Xu G.Y., Zhang X.L., Wang S.J., Li C., Wang G.X. Journal of Alloys and Compounds, 2017, vol. 695, pp. 2246–2252. DOI: 10.1016/j.jallcom.2016.11.075.

Patent 2395336 (RU). 2010. (in Russ.).

Yefremova S.V. Rossiyskiy khimicheskiy zhurnal, 2011, vol. 55, no. 1, pp. 57–62. (in Russ.).

M'int S.V., Aung S.T., Klushin V.N. Uspekhi v khimii i khimicheskoy tekhnologii, 2014, vol. 28, no. 5, pp. 8–10. (in Russ.).

Vurasko A.V., Shapovalova I.O., Petrov L.A., Stoyanov O.V. Vestnik tekhnologicheskogo universiteta, 2015, vol. 18, no. 11, pp. 49–56. (in Russ.).

Li M.S., Wu S.C., Peng Y.H., Shih Y.H. Separation and Purification Technology, 2016, vol. 170, no. 1, pp. 102–108. DOI: 10.1016/j.seppur.2016.06.029.

Suc N.V., Chi D.K. Journal of Dispersion Science and Technology, 2017, vol. 38, no. 2, pp. 216–222. DOI: 10.1080/01932691.2016.1155153.

Patent 2597381 (RU). 2016. (in Russ.).

Arnal P.M. MethodsX, 2015, no. 2, pp. 198–203. DOI: 10.1016/j.mex.2015.03.009.

Terent'yev A.P., Luskina B.M. Zhurnal analiticheskoy khimii, 1959, no. 1, pp. 112–117. (in Russ.).

Tarkovskaya I.A. Okislennyy ugol'. [Oxidized coal]. Kiev, 1981, 200 p. (in Russ.).

Smit A.L. Prikladnaya IK-spektroskopiya. [Applied IR spectroscopy]. Moscow, 1982, 328 p. (in Russ.).

Bazarnova N.G., Karpova Ye.V, Katrakov I.B, Markin V.I., Mikushina I.V., Ol'khov Yu.A, Khudenko S.V. Metody issledovaniya drevesiny i yeye proizvodnykh: uchebnoye posobiye. [Methods for the study of wood and its derivatives: a training manual]. Barnaul, 2002, 160 p. (in Russ.).

Romanenko A.V., Simonov P.A. Promyshlennyy kataliz v lektsiyakh. [Industrial catalysis in lectures]. Moscow, 2007, no. 7, pp. 7–110. (in Russ.).

Skripchenko G.B. Khimiya tverdogo topliva, 2009, no. 6, pp. 7–14. (in Russ.).

Mukhin V.M., Chebykin V.V., Galkin Ye.A., Vasil'yev N.P., Medyanik V.S., Tamam'yan A.N. Aktivnyye ugli. Elas-tichnyye sorbenty. Katalizatory, osushiteli i khimicheskiye poglotiteli na ikh osnove: katalog. [Active carbons. Elastic sorbents. Catalysts, dehumidifiers and chemical absorbers based on them: catalog]. Moscow, 2003, 280 p. (in Russ.).

Published
2020-06-10
How to Cite
1. Aref’yeva O. D., Zemnukhova L. A., Kovekhova A. V., Morgun N. P., Tsvetnov M. A. OBTAINING, COMPOSITION AND PROPERTIES OF CARBON-CONTAINING MATERIALS FROM PLANT RAW // Chemistry of plant raw material, 2020. № 2. P. 381-388. URL: https://journal.asu.ru/cw/article/view/6292.
Section
Application