STUDY OF THE COMPOSITION OF ESSENTIAL OIL ACHILLEA NOBILIS L. AND ITS ANTIBACTERIAL INFLU-ENCE ON CHANGE OF STAPHYLOCOCCUS AUREUS CELL ULTRASTRUCTURE
UDC 615.281:547.913+579.861.2: 620.187.3
Abstract
The component composition of the Achillea. nobilis essential oil, which grows in Azerbaijan, was studied for the first time by the gas-chromato-mass spectrometry method. In the essential oil, 35 components are identified, of which the predominant are artemisia ketone (23.706%), thujone 22.400%), 2-bornanone (6,367%), eudesm-7(11)-en-4-ol (6.321%), eucalyptol (4.507%), cubenol (3.317%), lavandulol (2.975%), β-thujone (2.933%), β-eudesmol (2.702%), methyl hinokiate (2.108%), terpinen-4-ol (1.715%), 1,2-longidione (1.313%), limonene-6-ol, pivalate (1.188%), neryl (S)-2-methylbutanoate (1.120%), caryophyllene oxide (1.014%).
The effect of A. nobilis essential oil on the ultrastructural organization of bacteria (S. aureus) was studied using transmission electron microscopy. It was revealed that under the influence of essential oil, a violation of the plasma permeability of the plasma membrane is observed, accompanied by diffusion of the fine-grained osmiophilic precipitate of the destroyed cytoplasmic structures, which leads to the loss of the layered structure of the wall elements and to a significant compaction of the matrix in comparison with the control preparations. The death of bacterial cells was observed with complete destruction of the integrity of all structures that make up their wall. Along with this, on ultrathin sections, focal accumulations of dead bacterial cells are found, surrounded by structurally changed elements of their walls. The remains of destructively altered fragments of CP are found on various parts of unseparated bacterial cells. All of the above shows that the essential oil of A. nobilis has a pronounced antibacterial activity.
Downloads
Metrics
References
Flora Azerbaydzhana. [Flora of Azerbaijan]. Baku, 1952, vol. 8, p. 265. (in Russ.).
Kerymly E.G., Serkerov S.V. Lıky – Lyudynı. Suchasnı problemy farmakoterapii I pryznachennya lıkarsʹkykh zasobıv. Materialy II Mizhnarodnoi naukovo-praktychnoi konferentsii. [Lyki - Lyudini. Modern problems of pharmacotherapy and prescription of drugs. Proceedings of the II International Scientific and Practical Conference]. Kharkiv, 2018, vol. 1, pp. 98–101. (in Russ.).
Serkerov S.V., Mustafayeva S.Dzh. Khimiya rastitel'nogo syr'ya, 2009, no. 2, pp. 101–103. (in Russ.).
Liselotte K., Anca M., Enne P., Ursula P. Z. Naturforsch., 2003, vol. 58c, pp. 11–16. DOI: 10.1515/znc-2003-1-202.
Ahmed A.M., Shar S.A., Mohamed-Elamir F.H. Rec. Nat. Prod., 2012, vol. 6, no. 1, pp. 21–27.
Gamal A.S., Hasan Y., Irem T., Rehab F.A., Serap A.A., Galip A. Journal of Pharmacy & Pharmacognosy Research, 2016, vol. 4, no. 3, pp. 107–114.
Ghasemi Y., Khalaj A., Mohagheghzadeh A. Khosaravi A. Chem. Nat. Comp., 2008, vol. 44, no. 5, pp. 663–665. DOI: 10.1007/s10600-008-9160.
Rybal'chenko O.V., Bondarenko V.M., Dobritsa V.P. Atlas ul'trastruktury mikrobioty kishechnika cheloveka. [Atlas of the ultrastructure of the human intestinal microbiota]. Leningrad, 2008, 112 p. (in Russ.).
Bassetti M., Trecarichi E.M, Mesini A., Spanu T., Giacobbe D.R., Rossi M., Shenone E., Pascale G.D., Molinari M.P., Cauda R., Viscoli C., Tumbarello M. Clin. Microbiol. Infect., 2012, vol. 18, no. 9, pp. 862–869.
Monaco M., Pimentel de Araujo F., Cruciani M., Coccia E., Pantosti A. Curr Top Microbiol Immunol., 2016, vol. 409, pp. 21–56. DOI: 10.1007/82_2016_3.
Brady A., Loughlin R., Gilpin D., Kearney P., Tunney M. J. Med. Microbiol., 2006, vol. 55, no. 10, pp. 1375–1380. DOI: 10.1099/jmm.0.46558-0.
Roller S., Ernest N., Buckle J. J. Altern Complement Med., 2009, vol. 15, no. 3, pp. 275–279. DOI: 10.1089/acm.2008.0268.
Chalchat J.C., Gorunovic M.S., Petrovic S.D. Journal of Essential Essential Oil Research, 1999, vol. 11, no. 3, pp. 306–310. DOI: 10.1080/10412905.1999.9701140.
Kücükbay F.Z., Kuyumcu E., Arabaci T. Chemistry of Natural Compounds, 2010, vol. 46, no. 25, pp. 824–825. DOI: 10. 1007/s10600-010-9758-3.
Jung W.K., Koo H.C., Kim K.W., Shin S., Kim S.H., Park Y.H. Appl. Environ. Microbiol., 2008, vol. 74, no. 7, pp. 2171–2178. DOI: 10.1128/AEM. 02001-07.
Chino T., Nukui Y., Morishita Y., Moriya K. Antimicrob. Resist. Infect. Control., 2017, vol. 6, p. 122. DOI: 10.1186/s13756-017-0281-1.
Ohmizo C., Yata M., Katsu T. J. Microbiol Methods, 2004, vol. 59, no. 2, pp. 173–179. DOI: 10.1016/j.mimet.2004.06.008.
Togashi N., Inoue Y., Hamashima H., Takano A. Molecules, 2008, vol. 13, no. 12, pp. 3069–3076. DOI: 10.3390/molecules13123069.
Inoue Y., Togashi N., Hamashima H. Biol. Pharm. Bull., 2016, vol. 39, no. 5, pp. 653–656. DOI: 10.1248/bpb.b15-00416.
Nanninga N. Microbiol. and Mol. Biol. Rev., 2001, vol. 65, no. 2, pp. 319–333. DOI: 10.11 28/MMBR.65.2.319-333.2001.
Vishnyakov I.Ye., Borkhsenius S.N. Tsitologiya, 2007, vol. 49, no. 5, pp. 421–429. (in Russ.).
Vedyaykina A.D., Ponomareva E.V., Khodorkovskiia M.A., Borchsenius S.N., Vishnyakov I.E. Microbiology, 2019, vol. 88, no. 3, pp. 245–260. DOI: 10.1134/S0026261719030159.
Hammond L.R., White M.L., Eswara P.J. J. Bacteriol., 2019, vol. 201, no. 21, e00245-19. DOI: 10.1128/JB.00245-19.
Santa Maria J.P. Jr., Sadaka A., Moussa S.H., Brown S., Zhang Y.J., Rubin E.J., Gilmore M.S., Walker S. Proc Natl Acad Sci USA, 2014, vol. 111, no. 34, pp. 12510–12515. DOI: 10.1073/pnas.1404099111.
Bottomley A.L., Kabli A.F., Hurd A.F., Turner R.D., Garcia-Lara J., Foster S.J. Mol. Microbiol., 2014, vol. 94, no. 5, pp. 1041–1064. DOI: 10.1111/mmi.12813.
Eswara P.J., Brzozowski R.S., Viola M.G., Graham G et al. Elife, 2018, vol. 7, e38856. DOI: 10.7554/eLife.38856.
Cleverley R.M., Rutter Z.J., Rismondo J., Corona F. et all. Nat. Commun., 2019, vol. 10 (1), p. 261. DOI: 10.1038/s41467-018-08056-2.
Potekhina N.V. Uspekhi biologicheskoy khimii, 2006, vol. 46, pp. 225–278. (in Russ.).
Hamilton-Miller J.M., Shah S. FEMS Microbiol. Lett., 1999, vol. 176, no. 2, pp. 463–469.
Bi E.F., Lutkenhaus J. Nature, 1991, vol. 354, pp. 161‒164.
Osawa M., Erickson H.P. Proc. Natl. Acad. Sci. USA, 2013, vol. 110, no. 27, pp. 11000‒11004.
Lund V.A., Wacnik K., Turner R.D., Cotterell B.E., Walther C.G., Fenn S.J., Grein F., Wollman A.J., Leake M.C., Olivier N., Cadby A., Mesnage S., Jones S., Foster S.J. Elife, 2018, vol. 21, no. 7, e32057. DOI: 10.7554/eLife.32057.
Mayanskiy A.N., Chebotar' I.V. Zhurnal mikrobiol., 2011, no. 1, pp. 101–108. (in Russ.).
Rybal'chenko O.V., Bondarenko V.M., Orlova O.G. Byulleten' Orenburgskogo nauchnogo tsentra UrO RAN, 2014, no. 1, pp. 1–11. (in Russ.).
Archer N.K., Mazaitis M.J., Costerton J.W., Leid J.G., Powers M.E., Shirtliff M.E. Virulence, 2011, vol. 2, no. 5, pp. 445–459. DOI: 10.4161/viru.2.5.17724.
Claessen D., Errington J. Microbiol, 2019, vol. 27, no. 12, pp. 1025–1033. DOI: 10.1016/j.tim.2019.07.008.
Copyright (c) 2021 chemistry of plant raw material

This work is licensed under a Creative Commons Attribution 4.0 International License.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.







