CP MAS 13C NMR SPECTROSCOPY IN DETERMINATION OF SPECIFIC DIFFERENCES IN COMPOSITION OF WOOD

UDC 630.812.14:537.635

  • Sergey Gennad'yevich Kostryukov National Research Mordovia State University http://orcid.org/0000-0002-1774-0836 Email: kostryukov_sg@mail.ru
  • Pavel Sergeevich Petrov National Research Mordovia State University https://orcid.org/0000-0001-7232-0335 Email: petrovps83@gmail.com
  • Yuliya Yurevna Masterova National Research Mordovia State University https://orcid.org/0000-0002-5844-1576 Email: masterova.yu@gmail.com
  • Tulfikar Djasim Idris National Research Mordovia State University Email: idristulfikar@gmail.com
  • Salohiddin Safarjonovich Hamdamov National Research Mordovia State University Email: rasulovsaloxiddin@bk.ru
  • Iskandarkhodzha Askarkhodzhaevich Yunusov National Research Mordovia State University Email: iskandar.yunusov.00@mail.ru
  • Nikita Sergeevich Kostryukov Saint Petersburg State University of Industrial Technologies and Design Email: nikita090861@bk.ru
Keywords: solid-state 13C NMR spectroscopy, CP MAS, wood, cellulose, hemicellulose, lignin, syringil, guaiacyl

Abstract

In recent years solid-state 13C NMR spectroscopy using the technique of cross-polarization (CP) and sample rotation at a magic angle (MAS) has been used in the analysis of plant materials, including wood. Knowledge of the composition, structure and behavior of wood components in different conditions is of great importance, since the properties of wood materials depend on this. In this work differences in the composition of various tree species wood in central Russia (birch, aspen, spruce, and larch) were revealed using CP MAS 13C NMR spectroscopy. Assignment of various peaks in CP MAS 13C NMR spectra with the main components of wood was carried out. It was shown that cellulose is presented in amorphous and crystalline forms, the presence of lignin is unambiguously confirmed by signals of aromatic carbon atoms, and hemicellulose is detected by signals from carbon atoms of methyl groups of acetylxylose and L-rhamnose. According to the integral intensities, the total proportion of cellulose and hemicellulose in relation to lignin was determined: the largest amount of lignin was found in coniferous wood (spruce, larch), and the smallest amount of lignin was detected in deciduous species (aspen and birch).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Sergey Gennad'yevich Kostryukov, National Research Mordovia State University

кандидат химических наук, заведующий кафедрой органической химии

Pavel Sergeevich Petrov, National Research Mordovia State University

кандидат химических наук, заведующий лабораторией ядерного магнитного резонанса

Yuliya Yurevna Masterova, National Research Mordovia State University

преподаватель кафедры органической химии

Tulfikar Djasim Idris, National Research Mordovia State University

студент

Salohiddin Safarjonovich Hamdamov, National Research Mordovia State University

студент

Iskandarkhodzha Askarkhodzhaevich Yunusov, National Research Mordovia State University

студент

Nikita Sergeevich Kostryukov, Saint Petersburg State University of Industrial Technologies and Design

студент

References

Sjöström E. Wood Chemistry, Fundamentals and Applications. San Diego, 1993, 293 p. DOI: 10.1016/C2009-0-03289-9.

Azarov V.I., Burov A.V., Obolenskaya A.V. Khimiya drevesiny i sinteticheskikh polimerov. [Chemistry of wood and synthetic polymers]. St.-Petersburg, 2010, 624 p. (in Russ.).

Hon D.N.-S., Shiraishi N. Wood and Cellulosic Chemistry. New York and Basel, 2001, 914 p.

Lenz R.W. Cellulose, structure, accessibility and reactivity. Philadelphia, PA, 1993, 376 p. DOI: 10.1002/pola.1994.080321221.

Kamide K. Cellulose and Cellulose Derivatives. Molecular Characterization and its Applications. Elsevier Science, 2005, 652 p.

Glasser W.G., Sarkanen S. Lignin: Properties and materials. ACS Symposium Series, American Chemical Society, Washington, DC, 1989, 560 p.

Katoh E., Ando I. Encyclopedia of Spectroscopy and Spectrometry. Elsevier, 2017, pp. 75–85. DOI: 10.1016/B978-0-12-803224-4.00283-1.

Tongyin Yu., Mingming G. Prog. Polym. Sci., 1990, vol. 15, no. 6, pp. 825–908. DOI: 10.1016/0079-6700(90)90024-U.

Xu J., Wang Q., Li S., Deng F. Solid-State NMR in Zeolite Catalysis. Springer Singapore, 2019, 260 p. DOI: 10.1007/978-981-13-6967-4_1.

Deschamps M. Annual reports on NMR spectroscopy, 2014, vol. 81, pp. 109–144. DOI: 10.1016/b978-0-12-800185-1.00003-6.

Gidley M.J. Trends Food Sci. Tech., 1992, no. 3, pp. 231–236. DOI: 10.1016/0924-2244(92)90197-5.

Conte P., Spaccini R., Piccolo A. Prog. Nucl. Magn. Reson. Spectrosc., 2004, vol. 44, pp. 215–223. DOI: 10.1016/j.pnmrs.2004.02.002.

Mao J., Cao X., Olk D.C., Chu W., Schmidt-Rohr K. Prog. Nucl. Magn. Reson. Spectrosc., 2017, vol. 100, pp. 17–51. DOI: 10.1016/j.pnmrs.2016.11.003.

Gil A.M., Neto C.P. Annual Reports on NMR Spectroscopy, 1999, vol. 37, pp. 75–117. DOI: 10.1016/S0066-4103(08)60014-9.

Love G.D., Snape C.E., Jarvis M.C. Biopolymers, 1992, vol. 32, no. 9, pp. 1187–1192. DOI: 10.1002/bip.36032090810.1002/bip.360320908.

Santoni I., Callone E., Sandak A., Sandak J., Dirè S. Carbohydrate Polymers, 2015, vol. 11, pp. 710–721. DOI: 10.1016/j.carbpol.2014.10.057.

Popescu C., Larsson P., Tibirna C., Vasile C. Appl. Spectrosc., 2010, vol. 64, no. 9, pp. 1054–1060. DOI: 10.1366/000370210792434413.

Melkior T., Barthomeuf C., Bardet M. Fuel, 2017, vol. 187, pp. 250–260. DOI: 10.1016/j.fuel.2016.09.031.

Hua X., Capretti G., Focher B., Marzetti A., Kokta B.V., Kaliaguine S. Appl. Spectrosc., 1993, vol. 47, no. 10, pp. 1693–1695. DOI: 10.1366/0003702934334822.

Cao X., Pignatello J.J., Li Yu., Lattao Ch., Chappell M.A., Chen N., Miller L.F., Mao J. Energy Fuels, 2012, vol. 26, no. 9, pp. 5983–5991. DOI: 10.1021/ef300947s.

Kostryukov S.G., Araslankin S.V., Petrov P.S. Khimiya rastitel'-nogo syr'ya, 2017, no. 4, pp. 31–40. DOI: 10.14258/jcprm.2017041860. (in Russ.).

Liu R., Chen Yu, Cao J. RSC Adv., 2015, vol. 5, no. 94, pp. 76708–76717. DOI: 10.1039/C5RA12245G.

Holtman K.M., Chang H., Jameel H., Kadla J.F. J. Wood Chem. Technol., 2006, vol. 26, no. 1, pp. 21–34. DOI: 10.1080/02773810600582152.

Published
2021-06-10
How to Cite
1. Kostryukov S. G., Petrov P. S., Masterova Y. Y., Idris T. D., Hamdamov S. S., Yunusov I. A., Kostryukov N. S. CP MAS 13C NMR SPECTROSCOPY IN DETERMINATION OF SPECIFIC DIFFERENCES IN COMPOSITION OF WOOD // Chemistry of plant raw material, 2021. № 2. P. 95-102. URL: https://journal.asu.ru/cw/article/view/8790.
Section
Biopolymers of plants