INFLUENCE OF CAPILLARY-POROUS STRUCTURE OF CELLULOSE ON PHYSICOCHEMICAL PROPERTIES OF FIBROUS MATERIAL

UDC 676.017, 544.723

  • Darya Alekseevna Polomarchuk Northern (Arctic) Federal University named after M.V. Lomonosov Email: Polomarchuk.d@edu.narfu.ru
  • Iraida Ivanovna Osovskaya St. Petersburg State University of Industrial Technologies and Design, Graduate School of Technology and Energy Email: iraosov@mail.ru
  • Julia Veniaminovna Sevastyanova Northern (Arctic) Federal University named after M.V. Lomonosov Email: J.Sevastyanova@narfu.ru
  • Konstantin Grigorievich Bogolitsyn Northern (Arctic) Federal University named after M.V. Lomonosov, Institute of Ecological Problems of the North FICCIA Email: k.bogolitsin@narfu.ru
  • Anastasia Eduardovna Parshina Northern (Arctic) Federal University named after M.V. Lomonosov Email: a.parshina@narfu.ru
  • Nikolay Ivanovich Bogdanovich Northern (Arctic) Federal University named after M.V. Lomonosov Email: n.bogdanovich@narfu.ru
Keywords: brown algae, hardwood pulp, algal pulp, paper web, composite

Abstract

The aim of this work is to establish the influence of capillary-porous structure of cellulose on the physicochemical properties of fibrous material. Sulphate bleached hardwood pulp and algal cellulose obtained from the brown alga Saccharina latissima were used in this work. Algal cellulose has a mesoporous structure with a developed specific surface area. The size of algal cellulose fibres is 0.1-0.4 mm, and in terms of morphology they are ribbon-shaped, some of which are twisted. The study of physical and mechanical properties of composite paper made of hardwood pulp with algae pulp additive revealed differences with paper made of pure hardwood pulp. The addition of algae cellulose imparts roughness to the paper web, reduces air permeability and capillary absorption. The composite is also more effective as a filter than a paper web made solely of hardwood pulp. The obtained composite paper has prospects for the production of special purpose papers.

Downloads

Download data is not yet available.

Author Biographies

Darya Alekseevna Polomarchuk , Northern (Arctic) Federal University named after M.V. Lomonosov

postgraduate student

Iraida Ivanovna Osovskaya, St. Petersburg State University of Industrial Technologies and Design, Graduate School of Technology and Energy

candidate of chemical sciences, associate professor

Julia Veniaminovna Sevastyanova, Northern (Arctic) Federal University named after M.V. Lomonosov

candidate of technical sciences, associate professor

Konstantin Grigorievich Bogolitsyn, Northern (Arctic) Federal University named after M.V. Lomonosov, Institute of Ecological Problems of the North FICCIA

doctor of chemical sciences, professor, director

Anastasia Eduardovna Parshina, Northern (Arctic) Federal University named after M.V. Lomonosov

candidate of chemical sciences, research fellow

Nikolay Ivanovich Bogdanovich, Northern (Arctic) Federal University named after M.V. Lomonosov

doctor of chemical sciences, professor

References

Zanchetta E., Damergi Е., Patel В., Borgmeyer Т., Pick Н., Pulgarin А., Ludwig С. Algal Res., 2021, vol. 56, 102288. https://doi.org/10.1016/j.algal.2021.102288.

Samyn P., Pappa I., Lama S., Vandamme D. Bioprospecting Algae for Nanosized Materials. Springer Nature Switzer-land AG, 2021, pp. 293–343. https://doi.org/10.1007/978-3-030-81557-8_13.

Siddhanta A.K. et al. Bioresour. Technol., 2009, vol. 100, no. 24, pp. 6669–6673. https://doi.org/10.1016/j.biortech.2009.07.047.

Siddhanta A.K. et al. J. Appl. Phycol., 2011, vol. 23, no. 5, pp. 919–923. https://doi.org/10.1007/s10811-010-9599-2.

Koyama M., Sugiyama J., Itoh T. Cellulose, 1997, vol. 4, no. 2, pp. 147–160. https://doi.org/10.1023/A:1018427604670.

Chen Y.W. et al. Carbohydr. Polym., 2016, vol. 151, pp. 1210–1219. https://doi.org/10.1016/j.carbpol.2016.06.083.

Mihranyan A. J. Appl. Polym. Sci., 2011, vol. 119, no. 4, pp. 2499–2460. https://doi.org/10.1002/app.32959.

Halib N. et al. Materials, 2017, vol. 10, no. 8, pp. 1–31. https://doi.org/10.3390/ma10080977.

Zanchetta E. et al. Algal Res., 2021, vol. 56, 102288. https://doi.org/10.1016/j.algal.2021.102288.

Domozych D.S. The Physiology of Microalgae. Cham: Springer International Publishing, 2016, pp. 47–63. https://doi.org/10.1007/978-3-319-24945-2_2.

Li S. et al. Arab. B, 2014, vol. 12, e0169. https://doi.org/10.1199/tab.0169.

McNamara J.T., Morgan J.L.W., Zimmer J. Annu. Rev. Biochem., 2015, vol. 84, pp. 895–921. https://doi.org/10.1146/annurev-biochem-060614-033930.

Gardner K.H., Blackwell J. Biopolymers, 1974, vol. 13, no. 10, pp. 1975–2001. https://doi.org/10.1002/bip.1974.360131005.

Tsekos I. J. Phycol., 1999, vol. 35, no. 4, pp. 635–655. https://doi.org/10.1046/j.1529-8817.1999.3540635.x.

Roberts A.W., Roberts E.M., Delmer D.P. Eukaryot. Cell., 2002, vol. 1, no. 6, pp. 847–855. https://doi.org/10.1128/EC.1.6.847-855.2002.

Chan W.S., Kwok A.C.M., Wong J.T.Y. Front. Microbiol., 2019, vol. 10, pp. 1–14. https://doi.org/10.3389/fmicb.2019.01783.

Roberts A.W., Roberts E. Cellulose: Molecular and Structural Biology. Springer, 2007, pp. 17–34. https://doi.org/10.1007/978-1-4020-5380-1_2.

Bogolitsyn K.G. et al. Chem. Nat. Compd., 2017, vol. 53, no. 3, pp. 533–537. https://doi.org/10.1007/s10600-017-2039-7.

Aleshina L.A. i dr. Struktura i fiziko-khimicheskiye svoystva tsellyuloz i nanokompozitov na ikh osnove. [Structure and physicochemical properties of celluloses and nanocomposites based on them]. Petrozavodsk, 2014, 240 p. (in Russ.).

Wahlstrom N., Edlund U., Pavia H., Toth G., Jaworski A., Pell A.J., Choong F.X., Shirani H., Nilsson K.P.R., Rich-ter-Dahlfors A. Cellulose, 2020, vol. 27, pp. 3707–3725. https://doi.org/10.1007/s10570-020-03029-5.

Bogolitsyn K., Parshina A., Ivanchenko N., Polomarchuk D. Algal Research, 2023, vol. 72, 103112. https://doi.org/10.1016/j.algal.2023.103112.

Flyate D.M. Tekhnologiya bumagi: uchebnik dlya vuzov. [Paper technology: textbook for universities]. Moscow, 1988, 440 p. (in Russ.).

Bogolitsyn K.G., Zubov I.N., Gusakova M.A., Chukhchin D.G., Krasikova A.A. Planta, 2015, vol. 241, pp. 1231–1239. https://doi.org/10.1007/s00425-015-2252-1.

Bolotova K.S., Chukhchin D.G., Mayyer L.V., Gur'yanova A.A. Lesnoy zhurnal, 2016, no. 6, pp. 153–165. https://doi.org/10.17238/issn0536-1036.2016.6.153. (in Russ.).

Grunin Yu.B., Grunin L.Yu., Nikol'skaya Ye.A., Talantsev V.I., Masas D.S. Butlerov Communications, 2011, vol. 24, no. 4, pp. 35–52. (in Russ.).

Bogolitsyn K.G., Ovchinnikov D.V., Kaplitsin P.A., Druzhinina A.S., Parshina A.E., Shul'gina Ye.V., Semushi-na M.P., Aleshina L.A. Khimiya prirodnykh soyedineniy, 2017, no. 3, pp. 452–456. (in Russ.).

Parshina A.E., Bogolitsyn K.G., Ivanchenko N.L., Polomarchuk D.A. Khimiya rastitel'nogo syr'ya, 2022, no. 3, pp. 325–336. https://doi.org/10.14258/jcprm.20220311299. (in Russ.).

Bogolitsyn K., Parshina A., Karmanov A., Kocheva L., Rachkova N., Polomarchuk D. Journal of Applied Phycology, 2023, vol. 35, pp. 1813–1819. https://doi.org/10.1007/s10811-023-02976-3.

GOST 28172-89. Tsellyuloza sul'fatnaya belenaya iz smesi listvennykh porod drevesiny. Tekhnicheskiye usloviya. [GOST 28172-89. Bleached sulfate pulp from a mixture of hardwood species. Technical conditions]. Moscow, 1989, 8 p. (in Russ.).

Bogolitsyn K.G., Parshina A.E., Shkayeva N.V., Aleshina L.A., Prusskiy A.I., Sidorova O.V., Bogdanovich N.I., Arkhilin M.A. Sverkhkriticheskiye flyuidy: teoriya i praktika, 2021, vol. 16, no. 2, pp. 110–130. https://doi.org/10.34984/SCFTP.2021.16.2.013. (in Russ.).

GOST 30437-96. Tsellyuloza. Metod opredeleniya belizny. [GOST 30437-96. Cellulose. Method for determining whiteness]. Moscow, 2001. (in Russ.).

GOST R ISO 11476-2010. Bumaga i karton. Metod opredeleniya belizny po CIE. S/2° osvetitel' (iskusstvennoye os-veshcheniye). [GOST R ISO 11476-2010. Paper and cardboard. Method for determination of whiteness according to CIE. C/2° illuminant (artificial lighting)]. Moscow, 2012. (in Russ.).

GOST 13523-78. Polufabrikaty voloknistyye, bumaga i karton. Metod konditsionirovaniya obraztsov. [GOST 13523-78. Semi-finished fibrous products, paper and cardboard. Method of conditioning samples]. Moscow, 1978, 4 p. (in Russ.).

GOST 13525.1-79. Polufabrikaty voloknistyye, bumaga i karton. Metody opredeleniya prochnosti na razryv i udlineni-ya pri rastyazhenii. [GOST 13525.1-79. Semi-finished fibrous products, paper and cardboard. Methods for determining tensile strength and tensile elongation]. Moscow, 1979, 5 p. (in Russ.).

GOST 13525.3-78. Polufabrikaty voloknistyye i bumaga. Metod opredeleniya soprotivleniya razdiraniyu. [GOST 13525.3-78. Semi-finished fibrous products and paper. Method for determining tear resistance]. Moscow, 1978, 11 p. (in Russ.).

GOST R ISO 9895-2013. Natsional'nyy standart Rossiyskoy Federatsii bumaga i karton. Opredeleniye soprotivleniya szhatiyu. Metod ispytaniya na korotkom rasstoyanii mezhdu zazhimami. [GOST R ISO 9895-2013. National standard of the Russian Federation paper and cardboard. Determination of compression resistance. Short-distance test method between clamps]. Moscow, 2013, 12 p. (in Russ.).

GOST 13525.8-86. Polufabrikaty voloknistyye, bumaga i karton. Metod opredeleniya soprotivleniya prodavlivaniyu. [GOST 13525.8-86. Semi-finished fibrous products, paper and cardboard. Method for determining the indentation re-sistance]. Moscow, 1986, 6 p. (in Russ.).

GOST 30115-95. Bumaga i karton. Opredeleniye sherokhovatosti/gladkosti (metody s primeneniyem propuskaniya vozdukha). Obshchiye trebovaniya. [GOST 30115-95. Paper and cardboard. Determination of roughness/smoothness (methods using air passage). General requirements]. Minsk, 1999, 7 p. (in Russ.).

GOST 12602-93. Bumaga i karton. Opredeleniye kapillyarnoy vpityvayemosti. Metod Klemma. [GOST 12602-93. Pa-per and cardboard. Determination of capillary absorbency. Klemm method]. Minsk, 1995, 8 p. (in Russ.).

GOST 7500-85. Bumaga i karton. Metody opredeleniya sostava po voloknu. [GOST 7500-85. Paper and cardboard. Methods for determining the composition by fiber]. Moscow, 1987, 50 p. (in Russ.).

Zhao C. et al. Carbohydrate Polymers, 2017, vol. 169, pp. 206–212. https://doi.org/10.1016/j.carbpol.2017.03.099.

Ioelovich M. ChemXpress, 2016, vol. 9, no. 3, pp. 245–251.

GOST 7625-86. Bumaga etiketochnaya. Tekhnicheskiye usloviya. [GOST 7625-86. Label paper. Technical conditions]. Moscow, 1986, 11 p. (in Russ.).

GOST R YeN 1822-3-2012. Vysokoeffektivnyye fil'try ochistki vozdukha EPA, HEPA i ULPA. Chast' 3. Ispytaniya plos-kogo fil'truyushchego materiala. [GOST R EN 1822-3-2012. High efficiency particulate air filters EPA, HEPA and ULPA. Part 3. Testing of flat filter material]. Moscow, 2014, 22 p. (in Russ.).

GOST 1822-1-2010 R YeN. Vysokoeffektivnyye fil'try ochistki vozdukha EPA, HEPA i ULPA. Chast' 1. Klassifikatsiya, metody ispytaniy, markirovka. [GOST 1822-1-2010 R EN. Highly efficient air purification filters EPA, HEPA and ULPA. Part 1. Classification, test methods, marking]. Moscow, 2011, 12 p. (in Russ.).

GOST R YeN 779-2014. Fil'try ochistki vozdukha obshchego naznacheniya. Opredeleniye tekhnicheskikh kharakteris-tik. [GOST R EN 779-2014. General-purpose air filters. Definition of technical characteristics]. Moscow, 2015, 68 p. (in Russ.).

Published
2025-03-23
How to Cite
1. Polomarchuk D. A., Osovskaya I. I., Sevastyanova J. V., Bogolitsyn K. G., Parshina A. E., Bogdanovich N. I. INFLUENCE OF CAPILLARY-POROUS STRUCTURE OF CELLULOSE ON PHYSICOCHEMICAL PROPERTIES OF FIBROUS MATERIAL // Chemistry of plant raw material, 2025. № 1. P. 351-362. URL: https://journal.asu.ru/cw/article/view/14679.
Section
Technology