EVALUATION OF THE EFFECT OF SILICON OXIDE NANOPARTICLES OF DIFFERENT ORIGIN ON THE PRODUCTION OF SOME PRIMARY AND SECONDARY METABOLITES IN PLANTS OF THE FAMILIES FABACEAE, POACEAE

UDC 615.322:615.326:539.213.26

  • Olga Nikolaevna Shplis Siberian State Medical University Email: o.shplis@yandex.ru
  • Natalia Eduardovna Kolomiets Siberian State Medical University, Kemerovo State Medical University Email: borkol47@mail.ru
  • Natalia Yurievna Abramets Siberian State Medical University Email: abrameznu@mail.ru
  • Bukharova Oksana Vladimirovna National Research Tomsk State University Email: bukharovagetina@gmail.com
  • Elena Borisovna Daibova Siberian Research Institute of Agriculture and Peat – branch of Siberian Federal Scientific Center of Agrobiotechnology of the Russian Academy of Sciences Email: edaibova@yandex.ru
  • Natalia Ivanovna Karakchieva National Research Tomsk State University Email: karakchieva@mail.tsu.ru
  • Mikhail Vladimirovich Korovkin National Research Tomsk Polytechnic University Email: mvk@tpu.ru
Ключевые слова: metabolites, nanoparticles, silicon dioxide modifications, Poaceae, Fabaceae

Аннотация

Scientists in different countries are conducting research on assessing a possibility of using silicon nanoparticles in various fields: medicine, pharmacy, medicinal crop production, etc. The work presents results of evaluating an influence of nanoparticles of different origin on production of primary and secondary metabolites. Nanoparticles, obtained from monomineral sand of natural origin, have been shown to increase production of primary and secondary metabolites in plants of the Poaceae family, as well as a content of a sum of chlorophylls, carotenoids, flavonoids, hydroxycinnamic acids, α- and β-chlorophylls and a majority of amino acids contained in leaves of Avena sativa (Poaceae) and Triticum aestivum (Poaceae).

Nanoparticles, obtained from synthetic quartz glass, influence production of only primary metabolites, an increase in a content of silicon and some amino acids in leaves and stems of Triticum aestivum (Poaceae).An effect of nanoparticles of different origin on a dynamics of accumulating sum of flavonoids and hydroxycinnamic acids by the example of the Fabaceae family has shown their increase in samples, collected at the beginning of a vegetation season. Morpho-structural analysis of nanoparticles of different origin has revealed differences in a morphology of particles, polymerization of silicon-oxygen chains, which probably explains the presence of distinctive features of a structure and peculiarities of their influence on production of metabolites in plants.

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

Olga Nikolaevna Shplis , Siberian State Medical University

Candidate of Pharmaceutical Sciences, senior Lecturer of the Department of Pharmaceutical Analysis

Natalia Eduardovna Kolomiets , Siberian State Medical University, Kemerovo State Medical University

Doctor of Pharmaceutical Sciences, Professor, Head of the Department of Pharmacy; Professor of the Department of Pharmaceutical Analysis

Natalia Yurievna Abramets, Siberian State Medical University

Candidate of Pharmaceutical Sciences, associate Professor of the Department of Pharmaceutical Analysis

Bukharova Oksana Vladimirovna , National Research Tomsk State University

Candidate of Geological and Mineralogical Sciences, associate Professor of the Department of Mineralogy and Geochemistry

Elena Borisovna Daibova, Siberian Research Institute of Agriculture and Peat – branch of Siberian Federal Scientific Center of Agrobiotechnology of the Russian Academy of Sciences

Candidate of Chemical Sciences, Head of the Analytical Center

Natalia Ivanovna Karakchieva, National Research Tomsk State University

Candidate of Chemical Sciences, senior Researcher, Laboratory of Chemical Technologies

Mikhail Vladimirovich Korovkin, National Research Tomsk Polytechnic University

Doctor of Physical and Mathematical Sciences, professor of the Department of Oil and Gas Engineering

Литература

Venzhik Y.V., Moshkov I.E., Dykman L.A. Russian Journal of Plant Physiology, 2021, vol. 68, no. 3, pp. 401–412. https://doi.org/10.1134/S1021443721020205.

Yurina T.A., Drobin G.V., Bogoslovskaya O.A., Olkhovskaya I.P., Glushchenko N.N. Sel'skokhozyaystvennaya biologiya, 2021, vol. 56, no. 1, pp. 135–145. https://doi.org/10.15389/agrobiology.2021.1.135rus. (in Russ.).

Panov D.A., Katsev A.M., Omel'chenko A.V. Khimiya Rastitel'nogo Syr'ya, 2022, no. 1, pp. 81–91. https://doi.org/10.14258/jcprm.2022019275. (in Russ.).

Akimov A.I., Solomonova E.S., Shoman N.Yu., Rylkova O.A. Russian Journal of Plant Physiology, 2023, vol. 70, no. 5, 111. https://doi.org/10.1134/s1021443723600253.

Kusum K., Neelam R., Vinita H. Plant Nano Biology, 2024, vol. 7, 100064. https://doi.org/10.1016/j.plana.2024.100064.

Rani N., Kumari K., Hooda V. Plant Physiology Reports, 2024, vol. 29, pp. 316–331. https://doi.org/10.1007/s40502-023-00774-0.

Voronkov M.G., Dyakov V.M. Silatrany. [Silatranes]. Novosibirsk, 1978, 207 p. (in Russ.).

Rao S.R., Ravishankar G.A. Biotechnology Advances, 2002, vol. 20 (2), pp. 101–153. https://doi.org/10.1016/s0734-9750(02)00007-1.

El-Kereti M.A., El-feky S.A., Khater M.S., Osman Y.A., Elsherbini E.A. Recent Patents on Food, Nutrition & Agri-culture, 2013, vol. 5 (3), pp. 169–181. https://doi.org/10.2174/2212798405666131112142517.

Kopach O.V., Kuzovkova A.A., Azizbekyan S.G., Reshetnikov V.N. Trudy BGU, 2013, vol. 8 (2), pp. 20–23. (in Russ.).

Volodina L.A., Baider L.M., Rakhmetova A.A., Bogoslovskaya O.A., Olkhovskaya I.P., Glushchenko N.N. Modern Chemical Physics. Tuapse, 2013, pp. 344–345.

Zelenkov V.N. Potapov V.V. Nanoindustry, 2020, vol. 13, no. 1, pp. 22–33. https://doi.org/10.22184/1993-8578.2020.13.1.22.33.

Werner M.K. Journal of Plant Physiology, 2005, vol. 162(12), pp. 1380–1381. https://doi.org/10.1016/j.jplph.2005.06.002.

Azim M., Iqbal N., Kausar S., Javed M.T., Akram M.S., Sajid M.A. Environ. Sci. Pollut. Res., 2015, vol. 22, pp. 14367–14371. https://doi.org/10.1007/s11356-015-4983-8.

Kim Y.H., Han A.L., Kim D.H., Lee S.Y., Kim K.M., Wax M. BMC Plant Biology, 2014, vol. 14 (1). https://doi.org/10.1186/1471-2229-14–13.

Dettmann K.K., Araujo V.L., Martins S.K., Sanglard L.M., Reis J.V., Dettmann E. New Phytologist, 2012, vol. 196 (3), pp. 752–762. https://doi.org/10.1111/j.1469-8137.2012.04299.x.

Dettmann K.K., Araujo V.L., Martens S.K., Fernie A.R., Da Мatta F.M. Plant signaling & Behaviour, 2013, vol. 8 (1), e22523. https://doi.org/10.4161/psb.22523.

Liu P., Ying L., Wang S., Zhang M., Deng H., Zhang S. et al. Environmental and Experimental Botany, 2015, vol. 111, pр. 42–51. https://doi.org/10.1016/j.envexpbot.2014.10.006.

Lu T., Jiang M., Jiang Z., Hui D., Wang Z., Zhou Z. Composites. Pt B, 2013, vol. 51, pp. 28–34. https://doi.org/10.1016/j.composites.2013.02.031.

Ma J., Cai H., He K., Zhang W., Wang L. New Phytologist, 2015, vol. 206 (3), pp. 1063–1074. https://doi.org/10.1111/nph.13276.

Shplis O., Kolomiez N., Abramez N., Deibova E., Karachieva N. Prospects for the Development of Agricultural Sci-ences. AGROSCIENCE – 2021: Int. Sci. Pract. Conf. Cheboksary, 2021, pp. 3–5.

Snytnikov V.N., Snytnikov D.A., Dubov V.I. et al. Applied Mechanics and Technical Physics, 2007, vol. 48, no. 2, pp. 172–184.

Bardakhanov S.P., Korchagin A.I., Kuksanov N.K., Lavrukhin A.A., Salimov R.A., Fadeev S.N., Cherepkov V.V. Reports of the Academy of Sciences, 2006, vol. 409, no. 3, pp. 320–323.

Metodika gosudarstvennogo sortoispytaniya sel'skokhozyaystvennykh kul'tur. [Methodology of state varietal testing of agricultural crops]. Moscow, 2019, vol. 1, 329 p. (in Russ.).

Kolomiets N.E., Kalinkina G.I., Sapronova N.N. Farmatsiya, 2011, no. 6, pp. 22–24. (in Russ.).

Gosudarstvennaya farmakopeya Rossiyskoy federatsii. XIV izd. [State Pharmacopoeia of the Russian Federation. XIV ed.]. Moscow, 2018, vol. 4, pp. 6539–6548. (in Russ.).

Kolomiets N.E., Kalinkina G.I. Farmatsiya, 2007, no. 1, pp. 11–14. (in Russ.).

Sun D., Hussain H.I., Yi Z., Ruks J.E., Kong L., Cahill D.M. Chemosphere, 2016, vol. 152, pp. 81–91. https://doi.org/10.1016/j.chemosphere.2016.02.096.

Sun D., Hussein H. I., Yi Z., Siegele R., Cresswell R., Kong L., Cahill D.M. Plant Cell Reports, 2014, vol. 33, pp. 1389–1402. https://doi.org/10.1007/s00299-014-1624-5.

MacDonald S.A., Schardt C.R., Masiello D.J., Simmons J.H. Journal of Non-Crystalline Solids, 2000, vol. 275, pp. 72–82.

Dunken H., Doremus R.H. Journal of Non-Crystalline Solids, 1989, vol. 92 (1), pp. 61–72.

Demars C., Pagel M., Deloule E., Blanc P. American Mineralogist, 1996, vol. 81, pp. 891–901. https://doi.org/10.2138/am-1996-7-812.

Yarovoy P.N. Lazernaya diagnostika lyuminestsiruyushchikh veshchestv. [Laser diagnostics of luminescent substanc-es]. Irkutsk, 1996, 176 p. (in Russ.).

Kuznetsov G.V., Taraschan A.N. Lyuminestsentsiya mineralov granitnykh pegmatitov [Luminescence of minerals of granite pegmatites]. Kyiv, 1988, 178 p. (in Russ.).

Pagel M., Barbin V., Blan P., Ohnenstetter D. Cathodoluminescence in geosciences. Berlin, 2000, 514 р. https://doi.org/10.1007/978-3-662-04086-7.

Gorobets B.S., Rogozhin A.A. Spektry lyuminestsentsii mineralov: Spravochnik. [Luminescence spectra of minerals: Reference book]. Moscow, 2001, 312 p. (in Russ.).

Boroznovskaya N.N., Korneva A.P., Marfin A.E. Key Engineering Materials, 2016, vol. 683, pp. 168–173. https://doi.org/10.4028/www.scientific.net/KEM.683.168.

Chukin G.D. Khimiya poverkhnosti i stroyeniye dispersnogo kremnezoma. [Surface chemistry and structure of dispersed silica]. Moscow, 2008, 172 p. (in Russ.).

Опубликован
2026-02-14
Как цитировать
1. Shplis O. N., Kolomiets N. E., Abramets N. Y., Oksana Vladimirovna B., Daibova E. B., Karakchieva N. I., Korovkin M. V. EVALUATION OF THE EFFECT OF SILICON OXIDE NANOPARTICLES OF DIFFERENT ORIGIN ON THE PRODUCTION OF SOME PRIMARY AND SECONDARY METABOLITES IN PLANTS OF THE FAMILIES FABACEAE, POACEAE // Химия растительного сырья, 2026. № 1. С. Online First. URL: https://journal.asu.ru/cw/article/view/14902.
Раздел
Низкомолекулярные соединения