SORPTION OF CADMIUM, LEAD, AND CHROMIUM (VI) BY CELLULOSIC COMPLEXES OF ARCTIC BROWN ALGAE
UDC 544.723, 544.726, 544-971
Abstract
The purpose of this work is to establish the mechanism of sorption of heavy metal ions (Cd, Pb, and Cr (VI)) by cellulose complexes (CC) of the arctic brown algae Laminaria digitata and Saccharina latissima. These complexes are fibrous mesoporous materials with active sorption centers -COOH, -OH, and -NH2 and a developed surface, which makes them potentially effective preparations for the enterosorption removal of heavy metal ions. The kinetics and thermodynamics of sorption have been studied as well as the influence of the acidity on the sorption capacity. It has been established that the sorption rate is highest during the first minutes of contact between the two phases; the sorption equilibrium is reached by 60 min. According to the sorption enthalpy values, temperature has a positive effect on sorption (endothermic process), with a maximum sorption capacity at 37 °C. Optimal pH of the medium: 5-6 for cadmium and lead, and 2 for chromium (VI), which indicates the possibility of using this material in a wide range of medium acidity, corresponding to the conditions of the human gastrointestinal tract. The results obtained indicate a high prospect of using CC as an effective enterosorbent for health preservation.
Downloads
Metrics
References
Briffa J., Sinagra E., Blundell R. Heliyon, 2020, vol. 6, no. 9, pp. 1–26. DOI: 10.1016/j.heliyon.2020.e04691.
Chakraborty R., Asthana A., Singh A.K., Jain B.S., Abu Bin Hasan S. International Journal of Environmental Analytical Chemistry, 2022, vol. 102, no. 2, pp. 342–379. DOI: 10.1080/03067319.2020.1722811.
Schiller A. da P., Gonçalves A.C., Braccini A.L., Schwantes D., Campagnolo M.A., Conradi E., Zimmermann J. Desalination and Water Treatment, 2020, vol. 187, pp. 203–218. DOI: 10.5004/dwt.2020.25094.
Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. Molecular, Clinical and Environmental Toxicology, Basel, 2012, vol. 101, pp. 133–164. DOI: 10.1007/978-3-7643-8340-4_6.
Alengebawy A., Abdelkhalek S.T., Qureshi S.R., Wang M. Toxics, 2021, vol. 9, 42. DOI: 10.3390/toxics9030042.
Huang L., Rad S., Xu L., Gui L., Song X., Li Y., Wu Z., Chen Z. Water, 2020, vol. 12, 431. DOI: 10.3390/w12020431.
Engwa G.A., Ferdinand P.U., Nwalo F.N., Unachukwu M.N. Poisoning in the Modern World – New Tricks for an Old Dog? London, 2019, pp. 1–23.
Jyothi N.R. Heavy Metals – Their Environmental Impacts and Mitigation, London, 2020, pp. 1–10. DOI: 10.5772/intechopen.95370.
Janaydeh M., Ismail A., Zulkifli S.Z., Omar H. Environmental Monitoring and Assessment, 2019, vol. 191, no. 10, pp. 1–8. DOI: 10.1007/s10661-019-7755-y.
Shelnutt S.R., Goad P., Belsito D.V. Critical Reviews in Toxicology, 2007, vol. 37, pp. 375–387. DOI: 10.1080/10408440701266582.
Tarasenko Yu.A., Gerashchenko I.I., Kartel' N.T. Poverkhnost', 2014, vol. 6, no. 21, pp. 110–121. (in Russ.).
Gutiérrez C., Hansen H.K., Hernández P., Pinilla C. Chemosphere, 2015, vol. 138, pp. 164–169. DOI: 10.1016/j.chemosphere.2015.06.002.
Mousavi S.M., Hashemi S.A., Babapoor A., Savardashtaki A., Esmaeili H., Rahnema Y., Mojoudi F., Bahrani S., Jahandideh S., Asadi M. Acta Chimica Slovenica, 2019, vol. 66, no. 4, pp. 865–873. DOI: 10.17344/acsi.2019.4984.
Fatullayeva S., Tagiyev D., Zeynalov N. Colloids and Interface Science Communications, 2021, vol. 45, 100545. DOI: 10.1016/j.colcom.2021.100545.
PND F 16.1:2.2:2.3:3.36-2002. Metodika izmereniy valovogo soderzhaniya kadmiya, kobal'ta, margantsa, medi, nikleya. svintsa, khroma i tsinka v pochvakh, donnykh otlozheniyakh, osadkakh stochnykh vod i otkhodakh metodom plamennoy atomno-absorbtsionnoy spektrometrii. [PND F 16.1:2.2:2.3:3.36-2002. Methodology for measuring the gross content of cadmium, cobalt, manganese, copper, nickel. lead, chromium and zinc in soils, bottom sediments, sewage sludge and waste by flame atomic absorption spectrometry]. Moscow, 2011. (in Russ.).
Bogolitsyn K., Parshina A., Aleshina L. Cellulose, 2020, vol. 27, pp. 9787–9800. DOI: 10.1007/s10570-020-03485-z.
Guarín-Romero J.R., Rodríguez-Estupiñán P., Giraldo L., Moreno-Piraján J.C. ACS Omega, 2019, vol. 4, pp. 18147–18158. DOI: 10.1021/acsomega.9b02061.
Mahmoodi P., Farhadian M., Solaimany Nazar A.R., Bashiri R. Advances in Environmental Technology, 2017, vol. 2, pp. 197–205. DOI: 10.22104/AET.2017.470.
Borhade A.V., Kshirsagar T.A., Dholi A.G., Agashe J.A. Journal of Chemical and Engineering Data, 2015, vol. 60, pp. 586–593. DOI: 10.1021/je500698x.
Bohli T., Ouederni A., Villaescusa I. Euro-Mediterranean Journal for Environmental Integration, 2017, vol. 2, no. 1, pp. 1–15. DOI: 10.1007/s41207-017-0030-0.
Mehta S.K., Gaur J.P. Critical Reviews in Biotechnology, 2005, vol. 25, no. 3, pp. 113–152. DOI: 10.1080/07388550500248571.
Igwe J.C., Abia A.A. Ecletica Quimica, 2007, vol. 32, no. 1, pp. 33–42. DOI: 10.1590/S0100-46702007000100005.
Shooto N.D. Journal of Environmental Chemical Engineering, 2020, vol. 8, no. 6, 104541. DOI: 10.1016/j.jece.2020.104541.
Kumar R., Sharma R.K., Singh A.P. Journal of Environmental Chemical Engineering, 2019, vol. 7, 103088. DOI: 10.1016/j.jece.2019.103088.
Batool F., Akbar J., Iqbal S., Noreen S., Bukhari S.N.A. Bioinorganic Chemistry and Applications, 2018, vol. 2018, pp. 1–11. DOI: 10.1155/2018/3463724.
Ahad R.I.A., Syiem M.B., Rai A.N. Environmental Technology & Innovation, 2021, vol. 21, 101283. DOI: 10.1016/j.eti.2020.101283.
Al-Ghouti M.A., Da’ana D.A. Journal of Hazardous Materials, 2020, vol. 393, pp. 1–22. DOI: 10.1016/j.jhazmat.2020.122383.
Khan T.A., Chaudhry S.A., Ali I. Journal of Molecular Liquids, 2015, vol. 202, pp. 165–175. DOI: 10.1016/j.molliq.2014.12.021.
Banerjee S., Chattopadhyaya M.C. Arabian Journal of Chemistry, 2017, vol. 10, pp. 1–10. DOI: 10.1016/j.arabjc.2013.06.005.
Tang Y., Liao X., Zhang X., Peng G., Gao J., Chen L. Science of the Total Environment, 2021, vol. 762, 143094. DOI: 10.1016/j.scitotenv.2020.143094.
Swelam A.A., Awad M.B., Gedamy Y.R., Tawfik A. Egyptian Journal of Chemistry, 2019, vol. 62, pp. 1189–1209. DOI: 10.21608/EJCHEM.2019.5527.1488.
Saadi R., Saadi Z., Fazaeli R., Fard N.E. Korean Journal of Chemical Engineering, 2015, vol. 32, pp. 787–799. DOI: 10.1007/s11814-015-0053-7.
Mahmoud M.A. Beni-Suef University Journal of Basic and Applied Sciences, 2015, vol. 4, pp. 142–149. DOI: 10.1016/j.bjbas.2015.05.008.
Copyright (c) 2022 chemistry of plant raw material

This work is licensed under a Creative Commons Attribution 4.0 International License.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.







