OXIDATION OF VISCOSE IN THE HNO3–H3PO4–NaNO2 SYSTEM: FUNCTIONAL AND STRUCTURAL ANALYSIS, PROPERTIES AND POTENTIAL APPLICATION

UDC 661.728.892:544.773.432

  • Butrim Sergey Mikhailovich Belarusian State University, Research Institute for Physical Chemical Problems https://orcid.org/0000-0002-9791-2959 Email: butryms@bsu.by
  • Tatyana Dmitrievna Bil′dyukevich Belarusian State University, Research Institute for Physical Chemical Problems Email: besserk1974@mail.ru
  • Natalya Stepanovna Butrim Belarusian State University, Research Institute for Physical Chemical Problems https://orcid.org/0009-0004-6218-4199 Email: besserk1974@mail.ru
  • Vladimir Vladimirovich Litvyak All-Russian Research Institute of Starch and Starch-containing Raw Materials Processing – Branch of Russian Potato Research Centre https://orcid.org/0000-0002-1456-9586 Email: besserk1974@mail.ru
Keywords: oxidized regenerated cellulose, catalyst, amorphization, oxidation state, carboxyl groups, nitroether nitrogen

Abstract

A method has been developed for the oxidation of regenerated cellulose (viscose) in the HNO3–H3PO4–NaNO2 system, which makes it possible to obtain oxidized regenerated cellulose with a COOH group content of 18–24% in powder form, which meets USP quality requirements, which allows its use as a biodegradable hemostatic material. The structure of oxidized regenerated celluloses with different contents of COOH groups was confirmed by IR spectroscopy and elemental analysis; the structure of the samples and their thermal stability were studied by X-ray diffraction and thermogravimetric (TG) analyses, respectively. It has been shown that the diffraction patterns of oxidized regenerated celluloses have reflections characteristic of two polymorphs: cellulose II (characteristic of the original regenerated cellulose) and cellulose I. It has been established in the IR spectrum of oxidized regenerated cellulose a band of C=O stretching vibrations of the carboxyl group appears at 1731 cm-1, the intensity of which increases with increasing content of carboxyl groups in oxidized viscose. It has been shown that the degree of crystallinity of oxidized regenerated celluloses obtained in this system decreases proportionally with an increase in the content of carboxyl groups in oxidized viscose, while complete amorphization of viscose is not observed even at the maximum degree of oxidation (24.09% COOH groups). It was founded that at a low catalyst concentration (0.06–0.12%) the viscose oxidation reaction has a pronounced autocatalytic character, and the kinetic curve has a characteristic S-shaped form, while the accumulation of bound nitrogen passed through a maximum and decreases significantly with the reaction time.

Downloads

Download data is not yet available.

Author Biographies

Butrim Sergey Mikhailovich, Belarusian State University, Research Institute for Physical Chemical Problems

candidate of chemical sciences, associate professor, leading researcher

Tatyana Dmitrievna Bil′dyukevich, Belarusian State University, Research Institute for Physical Chemical Problems

candidate of chemical sciences, senior researcher

Natalya Stepanovna Butrim, Belarusian State University, Research Institute for Physical Chemical Problems

Research Associate

Vladimir Vladimirovich Litvyak, All-Russian Research Institute of Starch and Starch-containing Raw Materials Processing – Branch of Russian Potato Research Centre

doctor of technical sciences, candidate of chemical sciences, associate professor, leading researcher

References

Lewis K.M., Spazierer D., Urban M.D., Lin L., Redl H., Goppelt A. European Surgery – Acta Chirurgica Austriaca, 2013, vol. 45, no. 4, pp. 213–220. https://doi.org/10.1007/s10353-013-0222-z.

Keshavarzi S., MacDougall M., Lulic D., Kasasbeh A., Levy M. Wounds: a Compendium of Clinical Research and Practice, 2013, vol. 25, no. 6, pp. 160–167.

Dan Dimitrijevich S., Tatarko M., Gracy R.W., Wise G.E., Oakford L.X., Linsky C.B., Kamp L. Carbohydrate Research, 1990, vol. 198, no. 2, pp. 331–341. https://doi.org/10.1016/0008-6215(90)84303-c.

Seguchi N., Sakamoto Y., Kishi K. The Journal of Craniofacial Surgery, 2023, vol. 35, no. 1, pp. 189–191. https://doi.org/10.1097/SCS.0000000000009772.

MacDonald M.H., Wang A.Y., Clymer J.W., Hutchinson R.W., Kocharian R. Med. Devices, 2017, vol. 10, pp. 273–279. https://doi.org/10.2147/MDER.S140663.

Spangler D., Rothenburger S., Nguyen K., Jampani H., Weiss S., Bhende S. Surg. Infect., 2003, vol. 4, no. 3, pp. 255–262. https://doi.org/10.1089/109629603322419599.

MacDonald M.H., Tasse L., Wang D., Zhang G., De Leon H., Kocharian R. J. Invest. Surg., 2021, vol. 34, no. 11, pp. 1198–1206. https://doi.org/10.1080/08941939.2020.1792007.

Signorelli F., Montano N. Surg. Technol. Int., 2020, vol. 37, pp. 414–419.

Baghdasarian S., Saleh B., Baidya A., Kim H., Ghovvati M., Sani E.S., Haghniaz R., Madhu S., Kanelli M., Noshadi I., Annabi N. Mater. Today Bio., 2021, vol. 13, 100199. https://doi.org/10.1016/j.mtbio.2021.100199.

Wagenhäuser M.U., Mulorz J., Ibing W., Simon F., Spin J.M., Schelzig H., Oberhuber A. Sci. Rep., 2016, vol. 6, 32238. https://doi.org/10.1038/srep32238.

Xie F., De Wever P., Fardim P., Van den Mooter G. Molecules, 2021, vol. 26, no. 4, pp. 1030–1045. https://doi.org/10.3390/molecules26041030.

Kumar V., Yang T. Carbohyd. Polym., 2002, vol. 48, p. 403. https://doi.org/10.1016/S0144-8617(01)00290-9.

Shibata I., Isogai A. Cellulose, 2003, vol. 10, pp. 151–158. https://doi.org/10.1023/A:1024051514026.

Kochkar H., Lassalle L., Morawietz M., Hölderich W.F. J. Catal., 2000, vol. 194, pp. 343–351. https://doi.org/10.1006/jcat.2000.2927.

Tamura N., Wada M., Isogai A. Carbohyd. Polym., 2009, vol. 77, no. 2, pp. 300–305. https://doi.org/10.1016/J.CARBPOL.2008.12.040.

Pierce A.M., Wilson D., Wiebkin O. International Journal of Oral and Maxillofacial Surgery, 1987, vol. 16, no. 3, pp. 338–345. https://doi.org/10.1016/s0901-5027(87)80156-x.

Pierce A., Wiebkin O., Wilson D. Journal of Oral Pathology and Medicine, 1984, vol. 13, no. 6, pp. 661–670. https://doi.org/10.1111/j.1600-0714.1984.tb01468.x.

Spotnitz W.D., Burks S. Transfusion, 2012, vol. 52, no. 10, pp. 2243–2255. https://doi.org/10.1111/j.1537-2995.2012.03707.x.

Wu Y.D., He J.M., Huang Y.D., Wang F.W., Tang F. Fibers and Polymers, 2012, vol. 13, pp. 576–581. https://doi.org/10.1007/s12221-012-0576-z.

Kaputskiy V.Ye., Yurkshtovich T.L., Balabayeva M.D., Kaputskiy F.N. Vestnik Belorusskogo universiteta, 1978, no. 1, pp. 15–18. (in Russ.).

Sarybayeva R.I., Shchelokhova L.S. Khimiya azotnokislykh efirov tsellyulozy. [Chemistry of cellulose nitrate esters]. Frunze, 1985, 164 p. (in Russ.).

Kaverzneva Ye.D., Salova A.S. Zhurnal analiticheskoy khimii, 1953, vol. 8, no. 6, pp. 365–369. (in Russ.).

Butrim S.M., Bil'dukevich T.D., Butrim N.S., Yurkshtovich T.L. Chemistry of Natural Compounds, 2023, vol. 59, pp. 6–10. https://doi.org/10.1007/s10600-023-03906-y.

Published
2025-02-25
How to Cite
1. Butrim S. M., Bil′dyukevich T. D., Butrim N. S., Litvyak V. V. OXIDATION OF VISCOSE IN THE HNO3–H3PO4–NaNO2 SYSTEM: FUNCTIONAL AND STRUCTURAL ANALYSIS, PROPERTIES AND POTENTIAL APPLICATION // Chemistry of plant raw material, 2025. № 1. P. 78-86. URL: https://journal.asu.ru/cw/article/view/14584.
Section
Biopolymers of plants