INVESTIGATION OF SIBERIAN SPRUCE BIODIVERSITY (PICEA OBOVATA L.) FROM SOUTH OF SIBERIA BY PHYSICOCHEMICAL METHODS

UDC 681.785.574:543.573:581.19

  • Ekaterina Aleksandrovna Tyutkova V.N. Sukachev Institute of Forest SB RAS - a separate division of the Federal Research Center KSC SB RASс Email: tyukatie@gmail.com
  • Maria Anatolyevna Plyashechnik V.N. Sukachev Institute of Forest SB RAS - a separate division of the Federal Research Center KSC SB RASс Email: lilwood@ksc.krasn.ru
  • Sergey Reginaldovich Loskutov V.N. Sukachev Institute of Forest SB RAS - a separate division of the Federal Research Center KSC SB RASс Email: lsr@ksc.krasn.ru
  • Dmitrii Aleksandrovich Mashukov V.N. Sukachev Institute of Forest SB RAS - a separate division of the Federal Research Center KSC SB RASс Email: mashukov1988@gmail.com
  • Aleksandr Vladimirovich Pimenov V.N. Sukachev Institute of Forest SB RAS - a separate division of the Federal Research Center KSC SB RASс Email: pimenov@ksc.krasn.ru
  • Stanislav Petrovich Efremov V.N. Sukachev Institute of Forest SB RAS - a separate division of the Federal Research Center KSC SB RASс Email: efr2@ksc.krasn.ru
Keywords: Siberian spruce, FT-IR spectroscopy, thermogravimetry, SEM

Abstract

In our study, we focused on assessing the potential of thermal analysis for intraspecific variability "monitoring" in Picea obovata L. from six sites located in the northeastern part of the Kuznetsk Alatau. We identified two sites with maximum and minimum spectral and thermal characteristics. Spruce wood samples from the Sarala site showed minimum values for the carbohydrate complex (cellulose and hemicelluloses) and an increased lignin content, which indicates a protective reaction of the plant in response to stress caused by active land exploitation with subsequent depletion of the fertile soil layer. Microclimatic growing conditions at the Kommunar site lead to an increase in the content of cellulose and hemicelluloses and a decrease in lignin synthesis. However, no features in the physical and chemical characteristics of the wood substance were found in the Siberian spruce trees from other key sites of Agaskyr and Tunguzhul (sites where signs of anthropogenic load were detected). The scanning electron microscopy method in this study proved its effectiveness in individualizing the anatomical characteristics of samples only by the average number of cells in annual rings.

Downloads

Download data is not yet available.

Author Biographies

Ekaterina Aleksandrovna Tyutkova , V.N. Sukachev Institute of Forest SB RAS - a separate division of the Federal Research Center KSC SB RASс

candidate of biological sciences, head of the laboratory of physical and chemical biology of woody plants

Maria Anatolyevna Plyashechnik, V.N. Sukachev Institute of Forest SB RAS - a separate division of the Federal Research Center KSC SB RASс

research fellow

Sergey Reginaldovich Loskutov , V.N. Sukachev Institute of Forest SB RAS - a separate division of the Federal Research Center KSC SB RASс

doctor of physical and chemical sciences, chief research fellow

Dmitrii Aleksandrovich Mashukov, V.N. Sukachev Institute of Forest SB RAS - a separate division of the Federal Research Center KSC SB RASс

candidate of biological sciences, senior research fellow

Aleksandr Vladimirovich Pimenov, V.N. Sukachev Institute of Forest SB RAS - a separate division of the Federal Research Center KSC SB RASс

doctor of biological sciences, deputy director of the institute for scientific work

Stanislav Petrovich Efremov, V.N. Sukachev Institute of Forest SB RAS - a separate division of the Federal Research Center KSC SB RASс

doctor of biological sciences, chief research fellow

References

Cadotte M.W. Ecol. Lett., 2017, vol. 20, pp. 989–996. https://doi.org/10.1111/ele.12796.

Yefremov S.P., Milyutin L.I. Bioraznoobraziye listvennits Aziatskoy Rossii. [Biodiversity of larches of Asian Russia]. Novosibirsk, 2010, 159 p. (in Russ.).

Kravchenko A.N., Ekart A.K., Larionova A.Ya. Genetika, 2016, vol. 52, no. 11, pp. 1262–1269. https://doi.org/10.7868/S0016675816090083.

Gao N., Li A., Quan C., Du L., Duan Y. J. Analytical Appl. Pyrolysis, 2013, vol. 100, pp. 26–32. https://doi.org/10.1016/j.jaap.2012.11.009.

Ren X., Guo J., Li S., Chang J. ACS Omega, 2020, vol. 5, no. 36, pp. 23364–23371. https://doi.org/10.1021/acsomega.0c03271.

Ulloa C.A., Gordon A.L., García X.A. Fuel Process Technol., 2009, vol. 90, pp. 583–590. https://doi.org/10.1016/j.fuproc.2008.12.015.

Tamburini D., Łucejko J.J., Zborowska M., Modugno F., Prądzyński W., Colombini M.P. J. Analytical Appl. Pyroly-sis, 2015, vol. 115, pp. 7–15. https://doi.org/10.1016/j.jaap.2015.06.005.

Babiński L., Zborowska M., Fabisiak E., Prądzyński W. Archaeol Anthropol Sci., 2019, vol. 11, pp. 6583–6594. https://doi.org/10.1007/s12520-019-00926-0.

Shen D.K., Gu S., Bridgwater A.V. J. Analytical Appl Pyrolysis., 2010, vol. 87, pp. 199–206. https://doi.org/10.1016/j.jaap.2009.12.001.

Entsiklopediya Respubliki Khakasiya [Encyclopedia of the Republic of Khakassia], ed. G.Yu. Semigin, V.A. Kuz'min, L.V. Anzhiganova, V.V. Anyushin, A.N. Asochakov, N.Ya. Artamonov. Abakan; Krasnoyarsk, 2008, vol. 2, 318 p. (in Russ.).

Kelepertzis E. Geoderma, 2014, vol. 221, pp. 82–90. https://doi.org/10.1016/j.geoderma.2014.01.007.

Krzeslowska M. Acta Physiol. Plant., 2011, vol. 33, pp. 35–51. https://doi.org/10.1007/s11738-010-0581-z.

Ovečka M., Takáč T. Biotechnol. Adv., 2014, vol. 32, pp. 73–86. https://doi.org/10.1016/j.biotechadv.2013.11.011.

Krzeslowska M., Lenartowska M., Samardakiewicz S., Bilski H., Wosny A. Environ. Pollut., 2010, vol. 158, pp. 325–338. https://doi.org/10.1016/j.envpol.2009.06.035.

Hossain A.K.M.Z., Koyama H., Hara T. J. Plant Physiol., 2006, vol. 163, pp. 39–47. https://doi.org/10.1016/j.jplph.2005.02.008.

Yang Z.B., Eticha D., Rotter B., Rao I.M., Horst W.J. New Phytol., 2011, vol. 192, pp. 99–113. https://doi.org/10.1111/j.1469-8137.2011.03784.x.

Claus H. Micron, 2004, vol. 35, pp. 93–96. https://doi.org/10.1016/j.micron.2003.10.029.

Chandran D., Sharopova N., Ivashuta S., Gantt J.S., VandenBosch K.A., Samac D.A. Planta, 2008, vol. 228 (1), pp. 151–166. https://doi.org/10.1007/s00425-008-0726-0.

Munns R., Tester M. Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911.

Szabolcs I. Salt-Affected Soils. USA, 1989, 274 p.

Lü P., Kang M., Jiang X., Dai F., Gao J., Zhang C. Planta, 2013, vol. 237, pp. 1547–1559. https://doi.org/10.1007/s00425-013-1867-3.

Evers D., Legay S., Lamoureux D., Hausman J.F., Hoffmann L., Renaut J. Plant Mol. Biol., 2012, vol. 78, pp. 503–514. https://doi.org/10.1007/s11103-012-9879-0.

Published
2025-09-19
How to Cite
1. Tyutkova E. A., Plyashechnik M. A., Loskutov S. R., Mashukov D. A., Pimenov A. V., Efremov S. P. INVESTIGATION OF SIBERIAN SPRUCE BIODIVERSITY (PICEA OBOVATA L.) FROM SOUTH OF SIBERIA BY PHYSICOCHEMICAL METHODS // Chemistry of plant raw material, 2025. № 3. P. 114-123. URL: https://journal.asu.ru/cw/article/view/16599.
Section
Biopolymers of plants