SYNTHESIS AND PROPERTIES OF CARBON GELS BASED ON PINE AND CEDAR POLYPHENOLS

UDC 547.9; 630.86

  • Nadezhda Mikhailovna Mikova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS" Email: nm@icct.ru
  • Ivan Petrovich Ivanov Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS", Siberian Federal University Email: ivanov@icct.ru
  • Anatoly Mikhailovich Zhizhaev Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS", Siberian Federal University Email: zhyzhaev@mail.ru
  • Boris Nikolayevich Kuznecov Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS", Siberian Federal University Email: inm@icct.ru
Keywords: cedar and pine tannins, ethanol lignin, crosslinking agents, carbon gels, porosity, structure

Abstract

New methods for obtaining porous carbon gels by carbonization of corresponding organic xerogels synthesized by sol-gel condensation of polyphenols (tannins and ethanol lignin) of pine and cedar with various crosslinking agents (formaldehyde, glutaraldehyde and furfuryl alcohol) in a weight ratio of 1:1.5 are proposed. The influence of the nature and composition of the initial components on the formation of the porous structure, apparent density and adsorption properties of carbon gels is established. A comparison of the characteristics of the porous structure of tannin-formaldehyde and tannin-furfuryl carbon gels obtained under the same conditions from tannins isolated from different types of tree bark - pine and cedar is made. Among the tannin-formaldehyde gels, the carbon gel obtained using cedar tannins has the highest specific surface area (540 m2/g), while the surface area of ​​the gel from pine tannins does not exceed 184 m2/g. The carbon tannin-furfuryl gel based on pine tannins has the highest specific surface area (585 m2/g) and pore volume (0.7 cm3 / g). The use of glutaraldehyde for crosslinking cedar tannins leads to a decrease in the specific surface area of ​​the carbon gel to 377 m2/g compared to the tannin-formaldehyde gel. The addition of lignin to pine tannins contributes to an increase in the specific surface area of ​​the carbon tannin-formaldehyde gel by 2.6 times (from 184 m2/g  to 482 m2/g). Using low-temperature nitrogen adsorption and scanning electron microscopy methods, it was found that when lignin macromolecules are introduced into the composition of tannin-formaldehyde gel, the size of the particles that form the carbon gel matrix increases, as does the size of the resulting pores.

Downloads

Download data is not yet available.

Author Biographies

Nadezhda Mikhailovna Mikova , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS"

candidate of chemical sciences, senior researcher

Ivan Petrovich Ivanov , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS", Siberian Federal University

candidate of technical sciences, senior researcher

Anatoly Mikhailovich Zhizhaev , Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS", Siberian Federal University

candidate of chemical sciences, leading researcher

Boris Nikolayevich Kuznecov, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Scientific Center SB RAS", Siberian Federal University

doctor of chemical sciences, professor, head of scientific direction

References

Choi J., Jung J.C., Jung W. Gels, 2024, vol. 10(6), 400. https://doi.org/10.3390/gels10060400.

Koopmann A.K., Schuster C., Torres-Rodríguez J., Kain S., Pertl-Obermeyer H., Petutschnigg A., Hüsing N. Molecules, 2020, vol. 25(21), 4910. https://doi.org/10.3390/molecules25214910.

Zhao S., Malfait W.J., Guerrero-Alburquerque N., Koebel M.M., Nystrçm G. Angew. Chem. Int. Ed., 2018, vol. 57, pp. 7580–7608. https://doi.org/10.1002/ange.2017090140.

Sam D.K., Sam E.K., Durairaj A., Lv X., Zhou Z., Liu J. Carbohydrate Research, 2020, vol. 491, 107986. https://doi.org/10.1016/j.carres.2020.107986.

Braghiroli F.L., Amaral-Labat G., Boss A.F.N., Lacoste C., Pizzi A. Biomolecules, 2019, vol. 9(10), pp. 587–621. https://doi.org/10.3390/biom9100587.

Lacoste C., Basso M.C., Pizzi A., Celzard A., Ella Bang E., Gallon N., Charrier B. Ind. Crops Prod., 2015, vol. 67, pp. 70–73. https://doi.org/10.1016/j.indcrop.2014.12.018.

Rey-Raap N., Szczurek A., Fierro V., Celzard A., Menéndez J.A., Arenillas A. Ind. Crops Prod., 2016, vol. 82, pp. 100–106. https://doi.org/10.1016/j.indcrop.2015.12.001.

Pizzi A.A. Biomolecules, 2019, vol. 9(8), 344. https://doi.org/10.3390/biom9080344.

Evans A.V.Y., Efhamisisi D., Pizzi A. Ind. Crops Prod., 2018, vol. 126, pp. 316–332. https://doi.org/10.1016/j.indcrop.2018.10.034.

Arbenz A., Avérous L. Biodegradable and bio-based polymers for biomedical and environmental applications. Wiley & Scrivener Publishing, 2016, pp. 97–148.

Amaral-Labat G., Grishechko L.I., Fierro V., Kuznetsov B.N., Pizzi A., Celzard A. Biomass and Bioenergy, 2013, vol. 56, pp. 437–445. https://doi.org/10.1016/j.biombioe.2013.06.001.

Teng B., Zhang T., Gong Y., Chen W. Afr. J. Agric. Res., 2013, vol. 8(47), pp. 5996–6001.

Jablonsky M., Nosalova J., Sladkova A., Haz A., Kreps F., Valka J., Miertus S., Frecer V., Ondrejovic M., Sima J., Surina I. Biotechnology Advances, 2017, vol. 35(6), pp. 726–750. https://doi.org/10.1016/j.biotechadv.2017.07.007.

Yazaki Y. Nat. Prod. Commun., 2015, vol. 10(3), pp. 513–520. https://doi.org/10.1177/1934578X1501000333.

Vassilev S.V., Baxter D., Andersen L.K., Vassileva G. Fuel, 2010, vol. 89(5), pp. 913–933. https://doi.org/10.1016/j.fuel.2009.10.022.

Mikova N.M., Zhyzhaev A.M., Ivanov I.P., Levdanskiy V.A., Taran O.P., Kuznetsov B.N. J. Sib. Fed. Univ. Chem., 2023, vol. 16(3), pp. 369–382.

Levdanskiy V.A., Levdanskiy A.V., Kuznetsov B.N. Khimiya rastitel'nogo syr'ya. 2022, no. 4, pp. 99–105. https://doi.org/10.14258/jcprm.20220411490. (in Russ.).

Ku C.S., Mun S.P. Wood Sci. Technol., 2007, vol. 41(3), pp. 235–247. https://doi.org/10.1007/s00226-006-0103-8.

Weinwurm F., Drljo A., Silva T.L.S., Friedl A. Chemical Engineering Transactions, 2014, vol. 39, pp. 583–588. https://doi.org/10.3303/CET1439098.

Mikova N.M., Zhizhayev A.M., Ivanov I.P., Fetisova O.Yu., Borovkova V.S., Kuznetsov B.N. Khimiya rastitel'nogo syr'ya, 2024, no. 3, pp. 91–101. https://doi.org/10.14258/jcprm.20240315111. (in Russ.).

Mikova N.M., Ivanov I.P., Fetisova O.Yu., Kazachenko A.S., Kuznetsov B.N. Bioresource Technology Reports, 2023, vol. 22, 101454. https://doi.org/10.1016/j.biteb.2023.101454.

Scioneaux A.N., Schmidt M.A., Moore M.A., Lindroth R.L., Wooley S.C., Hagerman A.E. J. Chem. Ecol., 2011, vol. 37, pp. 7–70. https://doi.org/10.1007/s10886-010-9887-y.

Williams V.M., Porter L.J., Hemingway R.W. Phytochemistry, 1983, vol. 22, pp. 569–572. https://doi.org/10.1016/0031-9422%2883%2983048-9.

Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Pure Appl. Chem., 2015, vol. 87(9-10), pp. 1051–1069. https://doi.org/10.1515/pac-2014-111.

Rouquerol F., Rouquerol J., Sing K.S.W., Llewellyn P., Maurin G. Adsorption by Powders and Porous Solids. Princi-ples, Methodology and Applications. Academic Press, 2012, 626 p. https://doi.org/10.1016/C2010-0-66232-8.

Pizzi A., Tondi G., Pasch H., Celzard A. J. Appl. Polym. Sci., 2008, vol. 110, pp. 1451–1456. https://doi.org/10.1002/app.28545.

Mikova, N.M., Ivanov I.P., Levdanskiy V.A., Kuznetsov B.N. Zhurnal Sibirskogo federal'nogo universiteta. Khimiya, 2020, no. 13(2), pp. 175–188. https://doi.org/10.17516/1998-2836-0173. (in Russ.).

Mikova N.M., Skvortsova G.P., Ivanov I.P., Levdanskiy V.A., Kuznetsov B.N. Zhurnal Sibirskogo federal'nogo universiteta. Khimiya, 2017, no. 10(3), pp. 368–380. https://doi.org/10.17516/1998-2836-0033. (in Russ.).

Lacoste C., Pizzi A., Bassо M.C., Laborie M.-P., Celzard A. Ind. Crops Prod., 2014, vol. 52, pp. 450–456. https://doi.org/10.1016/j.indcrop.2013.10.044.

Rey-Raap N., Menéndez J.A., Arenillas A. Carbon, 2014, vol. 78, pp. 490–499. https://doi.org/10.17516/1998-2836-015532.

Kraiwattanawong K., Sano N., Tamon H. Polymers, 2021, vol. 13(16), 2631. https://doi.org/10.3390/polym13162631.

Mikova N.M., Levdanskiy V.А., Skwortsova G.P., Zhizhaev А.М., Lutoshkin M.A., Chesnokov N.V., Kuznetsov B.N. Biomass Conv. Bioref., 2021, vol. 11(1), pp. 1565–1573. https://doi.org/10.1007/s13399-019-00561-8.

Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J. Pure Appl. Chem.. 1985, vol. 57. 603. https://doi.org/10.1351/pac198557040603.

Chen F., Xu M., Wang L., Li J. BioResources, 2011, vol. 6(2), pp. 1262–1272. https://doi.org/10.15376/BIORES.1262–1272.

Published
2025-09-15
How to Cite
1. Mikova N. M., Ivanov I. P., Zhizhaev A. M., Kuznecov B. N. SYNTHESIS AND PROPERTIES OF CARBON GELS BASED ON PINE AND CEDAR POLYPHENOLS // Chemistry of plant raw material, 2025. № 3. P. 101-113. URL: https://journal.asu.ru/cw/article/view/16854.
Section
Biopolymers of plants