PINUS SYLVESTRIS ETHANOL LIGNIN AND ITS AZO DERIVATIVES AS A COMPONENT OF SUNSCREEN

UDC 615.454:547.992.3:547.556.3

  • Viktor Aleksandrovich Golubkov Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center KSC SBRAS; Siberian Federal University https://orcid.org/0000-0002-1518-790X Email: golubkov.va@icct.krasn.ru
  • Anastasia Romanovna Sideleva Institute of Chemistry and Chemical Technology SB RAS Email: anastasideleva@gmail.com
  • Anna Andreevna Mikheykina Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center KSC SBRAS; Siberian Federal University Email: mikeikina.anna@yandex.ru
  • Angelina Sergeevna Tanaeva Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center KSC SBRAS; Siberian Federal University Email: tanaeva03@bk.ru
  • Marina Aleksandrovna Smirnova Institute of Chemistry and Chemical Technology SB RAS https://orcid.org/0000-0001-6506-3449 Email: smirnova.ma@icct.krasn.ru
  • Svetlana Andreevna Novikova Institute of Chemistry and Chemical Technology SB RAS https://orcid.org/0000-0002-8908-4225 Email: snovikchem@gmail.com
  • Yuriy Nikolaevich Malyar Institute of Chemistry and Chemical Technology SB RAS; Siberian Federal University https://orcid.org/0000-0001-9380-0290 Email: yumalyar@gmail.com
  • Oxana Pavlovna Taran Institute of Chemistry and Chemical Technology SB RAS; Siberian Federal University https://orcid.org/0000-0002-9452-5902 Email: taran.op@icct.krasn.ru
Keywords: sunscreens, SPF, ethanol lignin, azo coupling, pine wood, Pinus sylvestris

Abstract

Ethanol lignin from pine wood (Pinus sylvestris) and its azo derivatives synthesized by azo coupling with diazonium salts of 4-nitroanilin and sulfanilic acid was obtained. The structure azo compounds was confirmed by IR spectroscopy, depending on the functionalization of the diazonium salt, absorption bands of nitro – or sulfo-groups appear. Due to the presence of a sulfo group, a corresponding azo derivative is soluble in water. Based on data from the elemental composition and classical ideas about lignin structure, the degree of substitution was determined: one azo group account for 3 phenylpropane units. Molecular weight of azo derivatives of lignin increased compared to initial ethanol lignin. Lignin and azo compounds were tested as photoactive components in sunscreens. The water-soluble derivative of azo is dissolved in a cream base, while insoluble modifications of ethanolignin are distributed in micron-sized particles (up to 50 micrometers). Modification by azo coupling significantly changed the color of lignin and cream that containing it. Due to the lignin modification, it was possible to achieve an increase, albeit a small one, in the absorption efficiency in the long-wavelength part of the UV-A region (320–400 nm). Developed cream samples had SPF 5–10, which corresponds to daily sunscreens.

Downloads

Download data is not yet available.

Author Biographies

Viktor Aleksandrovich Golubkov, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center KSC SBRAS; Siberian Federal University

Junior Researcher, Laboratory of Catalytic Conversion of Renewable Resources

Anastasia Romanovna Sideleva, Institute of Chemistry and Chemical Technology SB RAS

schoolgirl

Anna Andreevna Mikheykina, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center KSC SBRAS; Siberian Federal University

Laboratory Assistant, Student, Laboratory of Catalytic Conversion of Renewable Resources

Angelina Sergeevna Tanaeva, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center KSC SBRAS; Siberian Federal University

Student

Marina Aleksandrovna Smirnova, Institute of Chemistry and Chemical Technology SB RAS

Candidate of Chemical Sciences, Researcher, Laboratory of Physicochemical Methods for Materials Research

Svetlana Andreevna Novikova, Institute of Chemistry and Chemical Technology SB RAS

Researcher, Laboratory of Molecular Spectroscopy and Analysis

Yuriy Nikolaevich Malyar, Institute of Chemistry and Chemical Technology SB RAS; Siberian Federal University

PhD, Senior Researcher

Oxana Pavlovna Taran, Institute of Chemistry and Chemical Technology SB RAS; Siberian Federal University

Head of Laboratory Catalytic transformations of renewable resources, Head of the Department of Organic and Analytical Chemistry

References

Olisova O.Yu., Vladimirova Ye.V., Babushkin A.M. Rossiyskiy zhurnal kozhnykh i veneri-cheskikh bolezney, 2012, vol. 6, no. 6, pp. 57–62. (in Russ.).

Sviridova A., Ishchenko A. Izvestiya vysshikh uchebnykh zavedeniy. Khimiya i khimicheskaya tekhnologiya, 2006, vol. 49, no. 11, pp. 3–14. (in Russ.).

Ishchenko A., Sviridova A. Izvestiya vysshikh uchebnykh zavedeniy. Khimiya i khimicheskaya tekhnologiya, 2006, vol. 49, no. 12, pp. 3–16. (in Russ.).

Sadeghifar H., Ragauskas A. Polymers, 2020, vol. 12, no. 5, 1134. https://doi.org/doi10.3390/polym12051134.

Lv S., Liang S., Zuo J., Zhang S., Wang J., Wei D. Iranian Polymer Journal, 2023, vol. 32, no. 11, pp. 1477–1497. https://doi.org/10.1007/s13726-023-01218-0.

Widsten P. Cosmetics, 2020, vol. 7, no. 4, 85. https://doi.org/10.3390/cosmetics7040085.

Barapatre A., Meena A.S., Mekala S., Das A., Jha H. International Journal of Biological Macromolecules, 2016, vol. 86, pp. 443–453. https://doi.org/10.1016/j.ijbiomac.2016.01.109.

Spiridon I., Poni P., Ghica G. Cellulose Chemistry and Technology, 2018, vol. 52, no. 7-8, pp. 543–550.

Karmanov A.P., Yermakova A.V., Raskosha O.V., Bashlykova L.A., Rachkova N.G., Kocheva L.S. Khimiya ras-titel'nogo syr'ya, 2023, no. 4, pp. 5–28. https://doi.org/10.14258/jcprm.20230412560. (in Russ.).

Antunes F., Mota I.F., Fangueiro J.F., Lopes G., Pintado M., Costa P.S. International Journal of Biological Macro-molecules, 2023, vol. 234, 123592. https://doi.org/10.1016/j.ijbiomac.2023.123592.

Qian Y., Zhong X., Li Y., Qiu X. Industrial Crops and Products, 2017, vol. 101, pp. 54–60. https://doi.org/10.1016/j.indcrop.2017.03.001.

Gordobil O., Olaizola P., Banales J.M., Labidi J. Molecules, 2020, vol. 25, no. 5, 1131. https://doi.org/10.3390/molecules25051131.

Widsten P., Tamminen T., Liitiä T. ACS Omega, 2020, vol. 5, no. 22, pp. 13438–13446. https://doi.org/10.1021/acsomega.0c01742.

Duy N.V., Tsygankov P.Y., Menshutina N.V. ChemEngineering, 2024, vol. 8, no. 4, 69. https://doi.org/10.3390/chemengineering8040069.

Lyu Y., Ji X.-X., Tian Z., Ji H., Zhang F., Dai L., Xie H., Si C. International Journal of Biological Macromolecules, 2023, vol. 230, 123122. https://doi.org/10.1016/j.ijbiomac.2022.123122.

Zhang H., Liu X., Fu S., Chen Y. Industrial & Engineering Chemistry Research, 2019, vol. 58, no. 31, pp. 13858–13867. https://doi.org/10.1021/acs.iecr.9b02086.

Zhang H., Bai Y., Yu B., Liu X., Chen F. Green Chemistry, 2017, vol. 19, no. 21, pp. 5152–5162. https://doi.org/10.1039/C7GC01974B.

Zhang J., Tian Z., Ji X.-X., Zhang F. International Journal of Biological Macromolecules, 2023, vol. 231, 123244. https://doi.org/10.1016/j.ijbiomac.2023.123244.

Wang B., Sun D., Wang H.-M., Yuan T.-Q., Sun R.-C. ACS sustainable chemistry & engineering, 2019, vol. 7, no. 2, pp. 2658–2666. https://doi.org/10.1021/acssuschemeng.8b05735.

Girard V., Fragnières L., Chapuis H., Brosse N., Marchal-Heussler L., Canilho N., Parant S., Ziegler-Devin I. Poly-mers, 2024, vol. 16, no. 13, 1901. https://doi.org/10.3390/polym16131901.

de Araújo Padilha C.E., da Costa Nogueira C., Oliveira Filho M.A., de Santana Souza D.F., de Oliveira J.A., dos San-tos E.S. Process Biochemistry, 2020, vol. 91, pp. 23–33. https://doi.org/10.1016/j.procbio.2019.11.029.

Wu Y., Qian Y., Lou H., Yang D., Qiu X. ACS Sustainable Chemistry & Engineering, 2019, vol. 7, no. 19, pp. 15966–15973. https://doi.org/10.1021/acssuschemeng.9b02317.

Zhang H., Liu X., Fu S., Chen Y. International journal of biological macromolecules, 2019, vol. 133, pp. 86–92. https://doi.org/10.1016/j.ijbiomac.2019.04.092.

Wu Y., Wu X., Zhang A., Ouyang X., Lou H., Yang D., Qian Y., Qiu X. Advanced Functional Materials, 2023, vol. 33, no. 43. 2303889. https://doi.org/10.1002/adfm.202303889.

Wu Y., Wu X., Zhang A., Ouyang X., Lou H., Yang D., Qian Y., Qiu X. Advanced Functional Materials, 2023, vol. 33, no. 43, 2303889. https://doi.org/10.1002/adfm.202303889.

Gogotov A., Luzhanskaya I. Khimiya rastitel'nogo syr'ya, 2005, no. 4, pp. 5–24. (in Russ.).

Gogotov A. Khimiya rastitel'nogo syr'ya, 1999, no. 1, pp. 39–52. (in Russ.).

Golubkov V.A., Tarabanko V.E., Kaygorodov K.L., Chelbina Y.V., Shestakov S.L., Smirnova M.A., Popov A.A., Skripnikov A.M., Vigul D.O., Borovkova V.S. Khimiya rastitel'nogo syr'ya, 2023, no. 4, pp. 137–145. https://doi.org/10.14258/jcprm.20230413782.

Kozhevnikov A.Yu., Shestakov S., Sypalova Yu.A. Khimiya rastitel'nogo syr'ya, 2023, no. 2, pp. 5–26. https://doi.org/10.14258/jcprm.20230211737. (in Russ.).

Golubkov V.A., Borovkova V.S., Lutoshkin M.A., Zos'ko N.A., Vasilieva N.Y., Malyar Y.N. Wood Science and Technology, 2024, vol. 58, no. 5-6, pp. 1861–1879. https://doi.org/10.1007/s00226-024-01590-x.

Borovkova V.S., Malyar Y.N., Vasilieva N.Y., Skripnikov A.M., Ionin V.A., Sychev V.V., Golubkov V.A., Taran O.P. Materials, 2023, vol. 16, no. 4, 1525. https://doi.org/10.3390/ma16041525.

Michelin M., Liebentritt S., Vicente A.A., Teixeira J.A. International Journal of Biological Macromolecules, 2018, vol. 120, pp. 159–169. https://doi.org/10.1016/j.ijbiomac.2018.08.046.

Sypalova Y.A., Belesov A.V., Grishanovich I.A., Repina V.I., Chukhchin D.G., Kozhevnikov A.Y. International Journal of Biological Macromolecules, 2025, vol. 290, 138952. https://doi.org/10.1016/j.ijbiomac.2024.138952.

Qian Y., Qiu X., Zhu S. Green Chemistry, 2015, vol. 17, no. 1, pp. 320–324. https://doi.org/10.1039/C4GC01333F.

Published
2025-12-12
How to Cite
1. Golubkov V. A., Sideleva A. R., Mikheykina A. A., Tanaeva A. S., Smirnova M. A., Novikova S. A., Malyar Y. N., Taran O. P. PINUS SYLVESTRIS ETHANOL LIGNIN AND ITS AZO DERIVATIVES AS A COMPONENT OF SUNSCREEN // Chemistry of plant raw material, 2025. № 4. P. Online First. URL: https://journal.asu.ru/cw/article/view/16910.
Section
Application