CHEMICAL CHARACTERIZATION OF NATIVE WATER-SOLUBLE POLYSACCHARIDES OF HYPERICUM PERFORATUM L., URTICA DIOICA L., FILIPENDULA ULMARIA (L.) MAXIM., SOLIDAGO VIRGAUREA L., SYMPHYTUM OFFICINALE L., SYRINGA VULGARIS L.

UDC 615.275.4

Keywords: polysaccharides, Hypericum perforatum L., Urtica dioica L., Filipendula ulmaria (L.) Maxim., Solidago virgaurea L., Symphytum officinale L., Syringa vulgaris L.

Abstract

The aim was to study previously undescribed native water-soluble polysaccharides (NWSPS) of plant species used as anti-inflammatory and/or immunomodulatory agents. NWSPS are obtained with water without heating from raw materials previously purified from lipophilic and phenolic components, followed by ethanol precipitation and purification by dialysis. The protein and uronic acid content were determined by spectrophotometric method, the molecular mass characteristics by high-efficiency exclusion chromatography, the monosaccharide composition by gas chromatography, and infrared spectra were obtained. Neutral sugars are the predominant components of all the studied NWSPS. The retention of uronic acids ranged from 5–7% (Filipendula ulmaria, Solidago virgaurea, Symphytum officinale) to 14–15% (Hypericum perforatum, Urtica dioica, Syringa vulgaris); protein – about 7–10% (with the exception of S. vulgaris). All the studied species have NWSPS that are homogeneous in molecular weight and have a low coefficient of heterogeneity (with the exception of S. virgaurea); they contain 1-6 fragments with a molecular weight from 100 to 400 kDa and 24-29 fragments with a molecular weight from 10 to 100 kDa. Monomeric fragments of H. perforatum NWSPS are represented in equal parts by xylose and galacturonic acid; U. dioica – xylose>glucose>galacturonic acid; F. ulmaria – xylose>rhamnose; S. virgaurea – glucose>galactose and galacturonic acid>xylose; S. officinale – glucose>xylose and galacturonic acid; S. vulgaris – galactose >galacturonic acid>xylose and glucose. Pyranose and furanose forms of monosaccharide fragments, α- and β-type glycosidic bonds are present in all NWSPS. It seems promising to further investigate the anti-inflammatory and/or immunomodulatory activity of the described NWSPS in order to justify further in-depth investigation of the chemical composition of polysaccharide complexes with proven biological activity.

Downloads

Download data is not yet available.

Author Biographies

Elena Yuryevna Avdeeva , Siberian State Medical University, Tomsk State University

Doctor of Pharmaceutical Sciences, Associate Professor, Professor in the Department of Pharmaceutical Analysis

Yaroslav Evgenievich Reshetov , Siberian State Medical University

Candidate of Pharmaceutical Sciences, Associate Professor in the Department of Pharmaceutical Analysis

Ekaterina Igorevna Gulina, Siberian State Medical University

Candidate of Pharmaceutical Sciences, Associate Professor in the Department of Pharmaceutical Analysis

Sergey Vladimirovich Krivoshekov, Siberian State Medical University

Candidate of Chemical Sciences, Associate Professor in the Department of Pharmaceutical Analysis

Anastasia Nikolaevna Savelyeva, Siberian State Medical University

Postgraduate Student

Anastasia Vasilyevna Zykova, Siberian State Medical University

Postgraduate Student

Aleksey Sergeevich Knyazev, Tomsk State University

Doctor of Chemical Sciences, Director of the Tomsk Engineering Chemical-Technological Center

Mikhail Valerievich Belousov, Siberian State Medical University

Doctor of Pharmaceutical Sciences, Professor, Head of the Department of Pharmaceutical Analysis

References

Wang M., Li C., Li J., Hu W., Yu A., Tang H., Li J., Kuang H., Zhang H. Molecules, 2023, vol. 12, no. 28, 4813. https://doi.org/10.3390/molecules28124813.

Chen H., Sun J., Liu J., Gou Y., Zhang X., Wu X., Sun R., Tang S., Kan J., Qian C., Zhang N., Jin C. Int. J. Biol. Macromol., 2019, vol. 131, pp. 484–494. https://doi.org/10.1016/j.ijbiomac.2019.03.126.

Ramberg J.E., Nelson E.D., Sinnott R.A. Nutrition Journal, 2010, vol. 9, no. 1, 54. https://doi.org/10.1186/1475-2891-9-54.

Sokolov S.Ya., Zamotayev I.P. Spravochnik po lekarstvennym rasteniyam (Fitoterapiya). [Handbook of medicinal plants (Phytotherapy)]. Moscow, 1990, 428 p. (in Russ.).

Zlobin A.A., Martinson Ye.A., Ovechkina I.A., Durnev Ye.A., Ovodova R.G., Litvinets S.G. Khimiya rastitel'nogo syr'ya, 2011, no. 1, pp. 33–38. (in Russ.).

Heydarian M., Jooyandeh H., Nasehi B., Noshad M. Int. J. Biol. Macromol., 2017, vol. 104 (A), pp. 287–293. https://doi.org/10.1016/j.ijbiomac.2017.06.049.

Shang H., Zhou H., Duan M., Li R., Wu H., Lou Y. Int. J. Biol. Macromol., 2018, vol. 112, pp. 889–899. https://doi.org/10.1016/j.ijbiomac.2018.01.198.

Kalinkina O.V., Sychev I.A. Potentsial sovremennoy nauki, 2017, vol. 27, no. 1, pp. 60–63. (in Russ.).

Kalinkina O.V., Sychev I.A. Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Biologiya i ekologiya, 2017, no. 1, pp. 62–68. (in Russ.).

Kopyt'ko Ya.F., Lapinskaya Ye.S., Sokol'skaya T.A. Khimiko-farmatsevticheskiy zhurnal, 2011, vol. 45, no. 10, pp. 32–41. https://doi.org/10.30906/0023-1134-2011-45-10-32-41. (in Russ.).

Olennikov D.N., Kashchenko N.I., Chirikova N.K. Molecules, 2017, vol. 22, 16. https://doi.org/10.3390/molecules22010016.

Patent 2735080 (RU). 2020. (in Russ.).

Reshetov Ya.Ye., Ligachova A.A., Avdeyeva Ye.Yu., Danilets M.G., Golovchenko V.V., Trofimova Ye.S., Gulina Ye.I., Sherstoboyev Ye.Yu., Gur'yev A.M., Rovkina K.I., Krivoshchekov S.V., Belousov M.V. Khimiya rastitel'nogo syr'ya, 2019, no. 4, pp. 77–85. https://doi.org/10.14258/jcprm.2019045483. (in Russ.).

Gosudarstvennaya farmakopeya Rossiyskoy Federatsii. XIV izdaniye. T. 1: Vvedeniye. Obshchiye polozheniya. Me-tody analiza lekarstvennykh sredstv. Reaktivy. [State Pharmacopoeia of the Russian Federation. XIV edition. Vol. 1: In-troduction. General Provisions. Methods of Analysis of Medicines. Reagents]. Moscow, 2018, 1814 p. (in Russ.).

Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. Anal. Chem., 1956, vol. 28, pp. 350–356. https://doi.org/10.1021/ac60111a017.

Chen H.X., Zhang M., Qu Z.S., Xie B.J. Food Chem., 2008, vol. 106, pp. 559–563. https://doi.org/10.1016/j.foodchem.2007.06.040.

Li X.Y., Wang L., Wang Y., Xiong Z.H. Effect of drying method on physicochemical properties and antioxidant activi-ties of Hohenbuehelia serotina polysaccharides // Process Biochem. 2016, vol. 51. Рp. 1100–1108. https://doi.org/10.1016/j.procbio.2016.05.006.

Kong L.S., Yu L., Feng T., Yin X.J., Liu T.J., Dong L. Carbohydr. Polym., 2015, vol. 125, pp. 1–8. https://doi.org/10.1016/j.carbpol.2015.02.042.

Gan L., Hua Z.S., Liang Y., Bi X.H. Int. Immunopharmacol., 2004, vol. 4, pp. 563–569. https://doi.org/10.1016/j.intimp.2004.01.023.

Schepetkin I.A., Quinn M.T. Int. Immunopharmacol., 2006, vol. 6, pp. 317–333. https://doi.org/10.1016/j.intimp.2005.10.005.

Song J.Y., Yang H.O., Pyo S.N., Jung I.S., Yi S.Y., Yun Y.S. Arch. Pharm. Res., 2002, vol. 25, pp. 158–164. https://doi.org/10.1007/BF02976557.

Ma G., Yang W., Mariga A.M., Fang Y., Ma N., Pei F., Hu Q. Sci. Rep., 2014, vol. 114, pp. 297–305. https://doi.org/10.1016/j.carbpol.2014.07.069.

Liu J., Wen X., Zhang X., Pu H., Kan J., Jin C. Int. J. Biol. Macromol., 2015, vol. 72, pp. 1182–1190. https://doi.org/10.1016/j.ijbiomac.2014.08.058.

Kačuráková M., Capek P., Sasinková V., Wellner N., Ebringerová A. Carbohydr. Polym., 2000, vol. 43, pp. 195–203. https://doi.org/10.1016/S0144-8617(00)00151-X.

Published
2025-11-20
How to Cite
1. Avdeeva E. Y., Reshetov Y. E., Gulina E. I., Krivoshekov S. V., Savelyeva A. N., Zykova A. V., Knyazev A. S., Belousov M. V. CHEMICAL CHARACTERIZATION OF NATIVE WATER-SOLUBLE POLYSACCHARIDES OF HYPERICUM PERFORATUM L., URTICA DIOICA L., FILIPENDULA ULMARIA (L.) MAXIM., SOLIDAGO VIRGAUREA L., SYMPHYTUM OFFICINALE L., SYRINGA VULGARIS L. // Chemistry of plant raw material, 2025. № 4. P. 80-89. URL: https://journal.asu.ru/cw/article/view/17020.
Section
Biopolymers of plants