POPLYPHENOL COMPOSITION IN THE SAMPLES FROM RUSSIAN CONIFERS

  • Anatoliy Broneslavovich Gavrilov Institute for Biological Instrument Engineering, Russian Academy of Sciences Email: ibpabg@yandex.ru
  • Sergey Vladimirovich Goryainov Peoples' Friendship University of Russia Email: goryainovs@list.ru
  • Anton Alekseyevich Marinichev Moscow Polytechnic University Email: anton1796@mail.ru
  • Natal'ya Nikolayevna Gessler Institute of Biochemistry A.N. Bach RAS Email: gessler51@mail.ru
  • Ol'ga Ivanovna Klyayn Institute for Biological Instrument Engineering, Russian Academy of Sciences Email: klein_olga@list.ru
  • Yelena Pavlovna Isakova Institute for Biological Instrument Engineering, Russian Academy of Sciences Email: elen_iss@mail.ru
  • Yuliya Ivanovna Deryabina Institute for Biological Instrument Engineering, Russian Academy of Sciences Email: yul_der@mail.ru
Keywords: polyphenols, natural antioxidants, reactive oxygen species, conifers

Abstract

A total polyphenol content and total antioxidant activity in the extracts isolated from coniferous wood and bark, namely common spruce (Picea abies), common pine (Pinus sylvestris), cedar pine (Pinus sibirica), siberian larch (Larix sibirica), juniper (Juniperus communis) from 7 regions of the European Russia were under study. Extraction of polyphenols was performed using a 20% ethyl alcoholic solution with a VER-200 extractor. The total polyphenol content was performed spectrophotometrically using the Folin-Ciocalteu reagent. The total antioxidants capacity was assayed with a Tsvet-Yauza-01-AA liquid chromatograph to assess the extract oxidation on the working electrode surface. Gallic acid served as the standard. For polyphenolic components identification we used the gas chromatography-mass spectroscopy with 42 standard samples of phenolic and polyphenolic compounds as the standards. 15 compounds of phenolic nature, namely salicylic and ferulic acids, stilbenes of resveratrol and isoranaptigenin, flavonoids of catechin, catechol, dihydroquercetin, quercetin, dihydrokempferol, kempferol, dihydromyrcetin, luteolin, apigenin, chrysin, pinocembrin. The extracts from common spruce (Picea abies), common pine (Pinus sylvestris), and cedar pine (Pinus sibirica) from the Eastern Russian regions, namely Perm and Vologda regions. The application of Russian conifers bark and wood is concluded to be a promising source of biologically active polyphenols.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Anatoliy Broneslavovich Gavrilov, Institute for Biological Instrument Engineering, Russian Academy of Sciences

кандидат технических наук, заведующий отделом

Sergey Vladimirovich Goryainov, Peoples' Friendship University of Russia

заведующий лабораторией

Anton Alekseyevich Marinichev, Moscow Polytechnic University

студент

Natal'ya Nikolayevna Gessler, Institute of Biochemistry A.N. Bach RAS

кандидат биологических наук, старший научный сотрудник

Ol'ga Ivanovna Klyayn, Institute for Biological Instrument Engineering, Russian Academy of Sciences

кандидат биологических наук, научный сотрудник лаборатории молекулярной инженерии

Yelena Pavlovna Isakova, Institute for Biological Instrument Engineering, Russian Academy of Sciences

кандидат биологических наук, старший научный сотрудник лаборатории экологической и эволюционной биохимии

Yuliya Ivanovna Deryabina, Institute for Biological Instrument Engineering, Russian Academy of Sciences

кандидат биологических наук, заведующая лабораторией экологической и эволюционной биохимии

References

Kliebenstein D.J., Osbourn A. Curr. Opin. Plant Biol., 2012, vol. 15, no. 4, pp. 415–423, DOI: 10.1016/j.pbi.2012.05.005.

Ramakrishna A., Ravishankar G.A. Plant Signal Behav., 2011, vol. 6, no. 11, pp. 1720–1731, DOI: 10.4161/psb.6.11.17613.

Chalker-Scott L., Fuchigami L.H. Low temperature stress physiology in crops, Boca Raton: CRC Press, 1989, pp. 68–76.

Strimbeck G.R., Schaberg P.G., Fossdal C.G, Schröder W.P., Kjellsen T.D. Front. Plant Sci., 2015, vol. 6, e884, DOI: 10.3389/fpls.2015.00884.

Schulz E., Tohge T., Zuther E., Fernie A.R., Hincha D.K. Plant Science, 2001, vol. 160, pp. 315–321, DOI: 10.1038/srep34027.

Jones C.G., Hartley S.E. Responses of plant metabolism to air pollution and global change, Leiden: Backhuys Publish-ers, 1998, pp. 23–50.

Angelcheva L., MishraY., Antti H., Kjellsen T.D., Funk C., Strimbeck R.G., Schröder W.P. New Phytol., 2014, vol. 204, no. 3, pp. 545–555, DOI: 10.1111/nph.12950

Dauwe R., Holliday J.A., Aitken S.N., Mansfield S.D. New Phytol., 2012, vol. 194, N1, pp. 192–205, DOI: 10.1111/j.1469-8137.2011.04027.x.

Pukacki P.M., Kamińska-Rożek E. Acta Physiol. Plant, 2013, vol. 35, no. 1, pp. 129–138, DOI: 10.1007/s11738-012-1055-2.

Dhuli P., Rohloff J., Strimbeck G.R. Front. Plant Sci., 2014, vol. 5, e706, DOI: 10.3389/fpls.2014.00706.

Chong J., Poutaraud A., Hugueney P. Plant Science, 2009, vol. 177, no. 3, pp. 143–155, DOI: 10.1016/j.plantsci.2009.05.012.

Gabastona J., Richarda T., Biaisa B., Waffo-Teguoa P., Pedrota E., Jourdesa M., et.al. Industrial Crops and Products, 2017, vol. 103, no. 2, pp. 267–273, DOI: 10.1016/j.indcrop.2017.04.009.

Fedorova T.Ye., Fedorov S.V., Babkin V.A. Khimiya rastitel'nogo syr'ya, 2018, no. 1, pp. 89–95, DOI: 10.14258/jcprm.2018012683. (in Russ.).

Garcia-Perez M.E., Royer M., Herbette G., Desjardins Y., Pouliot R., Stevanovic T. Food Chem., 2012, vol. 135, no. 3, pp. 1173–1182, DOI: 10.1016/j.foodchem.2012.05.050.

Jyske T., Laakso T., Latva-Mäenpää H. Tapaniola T., Saranpää P. Biomass and Bioenergy, 2014, vol. 71, no. 2, pp. 216–227, DOI: 10.1016/j.biombioe.2014.10.005.

Simioni C., Zauli G., Martelli A.M., Vitale M., Sacchetti G., Gonelli A., Neri L.M. Oncotarget, 2018, vol. 30, no. 9, pp. 17181–17198, DOI: 10.18632/oncotarget.24729.

Perez-Vizcaino F., Fraga C.G. Arch. Biochem. Biophys., 2018, vol. 646, pp. 107–112. DOI: 10.1016/j.abb.2018.03.022.

Akinwumi B.C., Bordun K.M., Anderson H.D. Int. J. Mol. Sci., 2018, vol. 19, no. 3, e792, DOI: 10.3390/ijms19030792.

Permyakova G.V., Loskutov S.R., Semenovich A.V. Khimiya rastitel'nogo syr'ya, 2008, no. 2, pp. 43–46. (in Russ.).

Teplova V.V., Isakova Ye.P., Klyayn O.I., Dergacheva D.I., Gessler N.N., Deryabina Yu.I. Prikladnaya biokhimiya i mikrobiologiya, 2018, vol. 54, no. 3, pp. 215–235, DOI: 10.7868/S0555109918030017. (in Russ.).

Kim J.S., Jobin C. Immunology, 2005, vol. 115, no. 3, pp. 375–387, DOI: 10.1111/j.1365-2567.2005.02156.x.

Sharkov V.I., Kuybina N.I., Solov'yeva Yu.P. Kolichestvennyy khimicheskiy analiz rastitel'nogo syr'ya. [Quantitative chemical analysis of plant materials]. Moskva, 1968, p. 6. (in Russ.).

Rukovodstvo R4.1.1672-03. Rukovodstvo po metodam kontrolya kachestva i bezopasnosti biologicheski aktivnykh do-bavok k pishche. [Management R4.1.1672-03. Guidelines for quality control and safety of dietary supplements.]. Mos-cow, 2003. (in Russ.).

Mamatkhanova M.A, Abdurakhmanov B.A., Nigmatullayev B.A., Sotimov G.B., Khalilov R.M. Mamatkhanov U. Khimiya rastitel'nogo syr'ya, 2016, no. 1, pp. 171–176, DOI: 10.14258/jcprm.201601685. (in Russ.).

Juniperus communis
Published
2018-10-28
How to Cite
1. Gavrilov A. B., Goryainov S. V., Marinichev A. A., Gessler N. N., Klyayn O. I., Isakova Y. P., Deryabina Y. I. POPLYPHENOL COMPOSITION IN THE SAMPLES FROM RUSSIAN CONIFERS // Chemistry of plant raw material, 2018. № 2. P. 51-58. URL: https://journal.asu.ru/cw/article/view/4260.
Section
Low-molecular weight compounds