POLYSACCHARIDES OF HIGHER FUNGI: SYSTEMATIZATION OF DATA ON EXTRACTION, STRUCTURE, BIO-LOGICAL PROPERTIES, AND PREBIOTIC POTENTIAL
UDC 579.66
Abstract
The article is devoted to the study of isolation processes, determination of the chemical structure, and analysis of physicochemical and prebiotic properties of polysaccharides obtained from fruiting bodies and mycelial biomass of different representatives of higher fungi. Polysaccharides vary in structure, physicochemical properties, monosaccharide composition, glycosidic bond types, molecular mass, and solubility in water or alkaline solutions. This review article outlines the distribution of polysaccharides within the cell wall of higher fungi, organized into three distinct layers: the outer layer comprises glycoproteins; the middle layer consists of β-glucans; and the inner layer consists of a complex of chitin and β-glucan. The composition and physiological activity of polysaccharides depend on the species of fungus, cultivation conditions (type of substrate and environmental factors), stage of development, storage conditions, extraction method, and other variables. Different methods of extraction followed by purification and structural identification are discussed. The most abundant polysaccharides in edible and medicinal mushroom species are α-, β-, or mixed glucans. The review details the chemical structure and biological properties of major polysaccharides (β-glucans) isolated from diverse mushroom species: lentinan, schizophyllan, grifolan, ganoderan, and crestin. Information is presented on the correlations between the biological activity of polysaccharides and their chemical structure, monosaccharide composition, molecular weight, chemical modifications, branching patterns and conformation. The prebiotic potential of polysaccharides of higher fungi is described, with evidence showing that polysaccharide fractions of higher mushrooms promote growth of probiotic bacterial strains, modulate human intestinal microbiota, and enhance short-chain fatty acid production.
Downloads
Metrics
References
Elnahas O.M., Elkhateed W.A., Daba G.M. International Journal of Biological Macromolecules, 2024, vol. 266, 130893. https://doi.org/10.1016/j.ijbiomac.2024.130893.
Elnahas M.O., Amin M.A., Hussein M.M., Shanbhag V.C., Ali A.E., Wall J.D. Molecules, 2017, vol. 22, no. 9, p. 18. https://doi.org/10.3390/molecules22091396.
Vetter J. Foods, 2023, vol. 12, no. 5, p. 19. https://doi.org/10.3390/foods12051009.
Nimrichter L., Rodrigues M.L., Rodrigues E.G., Travassos L.R. Microbes and infection, 2005, vol. 7, no. 4, pp. 789–798. https://doi.org/10.1016/j.micinf.2005.03.002.
Gow N.A., Latge J.-P., Munro C.A. Microbil. Spectr., 2017, vol. 5, no. 3, p. 25. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016.
Agustinho D.P., Miller L.C., Li L.X., Doering T.L. Memórias do Instituto Oswaldo Cruz, 2018, vol. 113, no. 7, e180040. https://doi.org/10.1590/0074-02760180040.
Wasser S. Biometrical Journal, 2014, vol. 37, no. 6, p. 56. https://doi.org/10.4103/2319-4170.138318.
Narayanan K.B., Zo S.M., Han S.S. International Journal of Biological Macromolecules, 2020, vol. 149, pp. 724–731. https://doi.org/10.1016/j.ijbiomac.2020.01.276.
Liang J., Zhang M., Wang X., Ren Y., Yue T., Wang Z., Gao Z. Carbohydr. Polym., 2021, vol. 273, p. 12. https://doi.org/10.1016/j.carbpol.2021.118558.
Giavasis I., Biliaderis C.G. Microbial Polysaccharides, Functional Food Carbohydrates. CRC Press, Boca Raton, 2006, pp. 167–214.
Cho S.-M., Park J.-S., Kim K.-P., Cha D.-Y., Kim H.-M., Yoo I.-D. The Korean Journal of Mycology, 1999, vol. 27, no. 2, pp. 170–174.
Liu X., Luo D., Guan J., Chen J., Xu X. Frontiers in Nutrition, 2022, vol. 9, p. 20. https://doi.org/10.3389/fnut.2022.1087826.
Zhang J., Wen C., Duan Y., Zhang H., Ma H. International Journal of Biological Macromolecules, 2019, vol. 132, pp. 906–914. https://doi.org/10.1016/j.ijbiomac.2019.04.020.
Zhang Z., Lv G., He W., Shi L., Pan H., Fan L. Carbohydrate Polymers, 2013, vol. 98, no. 2, pp. 1524–1531. https://doi.org/10.1016/j.carbpol.2013.07.052.
Zhang Z.F., Lv G.Y., Jiang X., Cheng J.H., Fan L.F. Carbohydrate Polymers, 2015, vol. 117, pp. 185–191. https://doi.org/10.1016/j.carbpol.2014.09.059.
Su C.H., Lai M.N., Ng L.T. Food Chemistry, 2017, vol. 220, pp. 400–405. https://doi.org/10.1016/j.foodchem.2016.09.181.
Hwang A.Y., Yang S.C., Kim J., Lim T., Cho H., Hwang K.T. LWT, 2019, vol. 110, pp. 80–84. https://doi.org/10.1016/j.lwt.2019.04.073.
Shu X., Zhang Y., Jia J., Ren X., Wang Y. International Journal of Biological Macromolecules, 2019, vol. 128, pp. 858–869. https://doi.org/10.1016/j.ijbiomac.2019.01.214.
Yang H., Yin T., Zhang S. International Journal of Food Properties, 2015, vol. 18, no. 7, pp. 1385–1390. https://doi.org/10.1080/10942912.2014.915849.
Wang Y., Jia J., Ren X., Li B., Zhang Q. International Journal of Biological Macromolecules, 2018, vol. 120, pp. 1760–1769. https://doi.org/10.1016/j.ijbiomac.2018.09.209.
Liu Y., Zhou Y., Liu M., Wang Q., Li Y. International Journal of Biological Macromolecules, 2018, vol. 112, pp. 326–332. https://doi.org/10.1016/j.ijbiomac.2018.01.13
Guo X., Zou X., Sun M. Carbohydrate Polymers, 2010, vol. 80, no. 2, pp. 344–349. https://doi.org/10.1016/ j.carbpol.2009.11.0.
Li S., Li J., Zhang J., Wang W., Wang X., Jing H. Evidence-based complementary and alternative medicine: eCAM. 2017, vol. 2017, p. 12. https://doi.org/10.1155/2017/7298683.
Wang Z.B., Pei J.J., Ma H.L., Cai P.F., Yan J.K. Carbohydrate Polymers, 2014, vol. 109, pp. 49–55. https://doi.org/10.1016/j.carbpol.2014.03.057.
Pei J.J., Wang Z.B., Ma H.L., Yan J.K. Carbohydrate Polymers, 2015, vol. 115, pp. 472–477. https://doi.org/10.1016/j. carbpol.2014.09.017.
Szwengiel A., Stachowiak B. Carbohydrate Polymers, 2016, vol. 146, pp. 310–319. https://doi.org/10.1016/j.carbpol.2016.03.015.
Palacios I., García-Lafuente A., Guillamon E., Villares A. Carbohydrate Research, 2012, vol. 358, pp. 72–77. https://doi.org/10.1016/j.carres.2012.06.016.
Sermwittayawong D., Patninan K., Phothiphiphit S., Boonyarattanakalin S., Sermwittayawong N., Hutadilok-Towatana N. Journal of Food Biochemistry, 2018, vol. 42, no. 5, e12606. https://doi.org/10.1111/jfbc.12606.
Gong P., Wang S., Liu M., Chen F., Yang W., Chang X. Carbohydrate Research, 2020, vol. 494, 108037. https://doi.org/10.1016/j.carres.2020.108037.
Miao J., Regenstein J.M., Qiu J., Zhang J., Zhang X., Li H., Zhang H., Wang Z. International Journal of Biological Macromolecules, 2020, vol. 150, pp. 102–113. https://doi.org/10.1016/j.ijbiomac.2020.02.054.
B´erard A., Clavel T., Le Bourvellec C., Davoine A., Le Gall S., Doussan C., Bureau S. Soil Biology and Biochemistry, 2020, vol. 149, 107961. https://doi.org/10.1016/j.soilbio.2020.107961.
Ruthes A., Smiderle F., Iacomini M. Carbohyd Polym., 2015, vol. 117, pp. 753–761. https://doi.org/10.1016/j.carbpol.2014.10.051.
Teng C., Qin P., Shi Z., Zhang W., Yang X., Yao Y., Ren G. Food Hydrocolloids, 2021, vol. 113, p. 10. https://doi.org/10.1016/j.foodhyd.2020.106392.
da Silva Milhorini S., Simas F., Smiderle F., Inara de Jesus L., Rosado F., Longoria E. Food Hydrocolloids, 2022, vol. 125, p. 9. https://doi.org/10.1016/j.foodhyd.2021.107392.
Smiderle F.R., Morales D., Gil-Ramírez A., de Jesus L.I., Gilbert-Lopez B., Iacomini M. Carbohydrate Polymers, 2017, vol. 156, pp. 165–174. https://doi.org/10.1016/j.carbpol.2016.09.029.
Akram K., Shahbaz H.M., Kim G.R., Farooq U., Kwon J.H. Journal of Food Science, 2017, vol. 82, no. 2, pp. 296–303. https://doi.org/10.1111/1750-3841.13590.
Parniakov O., Lebovka N.I., Van Hecke E., Vorobiev E. Food and Bioprocess Technology, 2014, vol. 7, no. 1, pp. 174–183. https://doi.org/10.1007/s11947-013-1059-y.
Shang H., Wu H., Dong X., Shi X., Wang X., Tian Y. Process Biochemistry, 2019, vol. 82, pp. 179–188. https://doi.org/10.1016/j.procbio.2019.03.027.
Zhu Y., Yu X., Ge Q., Li J., Wang D., Wei Y., Ouyang Z. International Journal of Biological Macromolecules, 2020, vol. 157, pp. 394–400. https://doi.org/10.1016/j.ijbiomac.2020.04.163.
Wang B., Niu J., Mai B., Shi F., Li M., Chen L., Wang P., Liu Q. Glycoconjugate Journal, 2020, vol. 37, pp. 777–789. https://doi.org/10.1007/s10719-020-09949-5.
Wu Y., Liu H., Li Z., Huang D., Nong L., Ning Z., Hu Z., Xu C., Yan J.-K. Preparative Biochemistry and Biotechnol-ogy, 2022, vol. 52, no. 1, pp. 89–98. https://doi.org/10.1080/10826068.2021.1911815.
Chikari F., Han J., Wang Y., Ao W. Process Biochemistry, 2020, vol. 95, pp. 297–306. https://doi.org/10.1016/j.procbio.2020.03.009.
Liu Z., Yu D., Li L., Liu X., Zhang H., Sun W., Lin C.-C., Chen J., Chen Z., Wang W. Molecules, 2019, vol. 24, no. 3. https://doi.org/10.3390/molecules24030403.
You Q., Yin X., Ji C. Carbohydr. Polym., 2014, vol. 101, pp. 379–385. https://doi.org/10.1016/j.carbpol.2013.09.031.
Tang W., Liu D., Yin J.-Y., Nie S.-P. Trends in Food Science & Technology, 2020, vol. 99, pp. 76–87. https://doi.org/10.1016/j.tifs.2020.02.015.
Lu Z., Lee P.-R., Yang H. Food Hydrocolloids, 2022, vol. 130, p. 12. https://doi.org/10.1016/j.foodhyd.2022.107691.
Ji X., Han L., Liu F., Yin S., Peng Q., Wang M. International Journal of Biological Macromolecules, 2019, vol. 127, pp. 204–209. https://doi.org/10.1016/j.ijbiomac.2019.01.043.
Li H., Cao K., Cong P., Liu Y., Cui H., Xue C. Carbohydr. Polym., 2018, vol. 190, pp. 87–94. https://doi.org/10.1016/j.carbpol.2018.02.077.
Leong Y., Yang F., Chang J. Carbohyd Polym., 2021, vol. 251. https://doi.org/10.1016/j.carbpol.2020.117006.
Wu D., He Y., Fu M., Gan R., Hu Y., Peng L. Food Hydrocolloids, 2022, vol. 122. https://doi.org/10. 1016/j.foodhyd.2021.107085.
Lu H., Lou H., Hu J., Liu Z., Chen Q. Comprehensive Reviews in Food Science and Food Safety, 2020, vol. 19, no. 5, pp. 2333–2356. https://doi.org/10.1111/1541-4337.12602.
Yadav D., Negi P.S. Food Research International, 2021, vol. 148, no. 4. https://doi.org/10.1016/j.foodres.2021.110599.
Araújo-Rodrigues H., Sofia Sousa A., Pintado M.E., Barros D. Edible Fungi: Chemical composition, nutrition and health effects. Royal Society of Chemistry, 2022, pp. 232–272. https://doi.org/10.1039/9781839167522-00232.
Niego A.G., Rapior S., Thongklang N., Rasp´e O., Jaidee W., Lumyong S., Hyde K.D. Journal of Fungi, 2021, vol. 7, no. 5. https://doi.org/10.3390/jof7050397.
Chakraborty N., Banerjee A., Sarkar A., Ghosh S., Acharya K. Biointerface Research in Applied Chemistry, 2020, vol. 11, no. 2, pp. 8915–8930. https://doi.org/10.33263/BRIAC112.89158930.
Maity P., Sen I.K., Chakraborty I., Mondal S., Bar H., Bhanja S.K., Maity G.N. International Journal of Biological Macromolecules, 2021, vol. 172, pp. 408–417. https://doi.org/10.1016/j.ijbiomac.2021.01.081.
Cerletti C., Esposito S., Iacoviello L. Nutrients, 2021, vol. 13, no. 7. https://doi.org/10.3390/nu13072195.
Du B., Meenu M., Liu H., Xu B. International Journal of Molecular Sciences, 2019, vol. 20, no. 16. https://doi.org/10.3390/ijms20164032.
Cateni F., Gargano M.L., Procida G., Venturella G., Cirlincione F., Ferraro V. Nutrition and health. Phytochemistry Reviews, 2022, vol. 21, no. 2, pp. 339–383. https://doi.org/10.1007/s11101-021-09748-2.
Martinez-Medina G.A., Ch´avez-Gonz´alez M.L., Verma D.K., Prado-Barrag´an L.A., Martínez-Hern´andez J.L., Flo-res-Gallegos A.C., Aguilar C.N. Journal of Functional Foods, 2021, vol. 77. https://doi.org/10.1016/j.jff.2020.104326.
Su Y., Cheng S., Ding Y., Wang L., Sun M., Man C., Zhang Y., Jiang Y. International Journal of Biological Macro-molecules, 2023, vol. 233. https://doi.org/10.1016/j.ijbiomac.2023.123558.
Ferreiro E., Pita I.R., Mota S.I., Valero J., Ferreira N.R., Fernandes T., Rego A.C. Oncotarget, 2018, vol. 9, no. 68, pp. 32929–32942. https://doi.org/10.18632/oncotarget.25978.
Miro´nczuk-Chodakowska I., Kujawowicz K., Witkowska A.M. Nutrients, 2021, vol. 13, no. 11, p. 3960. https://doi.org/10.3390/nu13113960.
Thongsiri C., Nagai-Yoshioka Y., Yamasaki R., Adachi Y., Usui M., Nakashima K., Nishihara T., Ariyoshi W. Car-bohydrate Polymers, 2021, vol. 253, no. 7. https://doi.org/10.1016/j.carbpol.2020.117285.
Reddy P., Rajeswari U., Kumar S. Carbohydrate Research, 2021, vol. 503, no. 12. https://doi.org/10.1016/j.carres.2021.108297.
Binfen Z., Zhen-hua T., Ju-fang G. Advances in metabolic resistance to insecticides in insects. Elsevier Inc., 2008, vol. 323, pp. 313–315.
Chioru A. Chirsanova A. Food and Nutrition Sciences, 2023, vol. 14, pp. 963–983. https://doi.org/10.4236/fns.2023.1410061.
Sobieralski K., Siwulski M., Lisiecka J., Jedryczka M., Golak I.S., Jozwiak D.F. Acta Scientiarum Polonorum-Hortorum Cultus, 2012, vol. 11, pp. 111–128.
Ooi V.E.C., Liu F. Current Medicinal Chemistry, 2000, vol. 7, pp. 715–729. https://doi.org/10.2174/0929867003374705.
Stoica R.M., Moscovici M., Lakatos E.S., Cioca L.I. Properties and Pharmaceutical, 2023, vol. 11, p. 335. https://doi.org/10.3390/pr11020335.
Mostecka H., Machkova Z., Masek K., Kaneko Y., Chihara G. International Journal of Immunopharmacology, 1991, vol. 13, pp. 281–289.
Bel G., Szollosi J., Chiiara G., Fachet J. International Journal of Immunopharmacology, 1989, vol. 11, pp. 615–621.
Wang X., Xu X., Zhang L. Journal of Chemical Physics, 2008, vol. 112, pp. 10343–10351. https://doi.org/10.1021/jp802174v.
Zhang X., Xu J., Zhang L. Biopolymers, 2005, vol. 78, pp. 187–196. https://doi.org/10.1002/bip.20273.
Yagi M., Watanabe S., Yoshino S., Hazama S., Suga T., Nakazama S. Gan Kagaku Ryoho, 2010, vol. 37, pp. 457–462.
Oba K., Kobayashi M., Matsui T., Kodera Y., Sakamoto J. Anticancer Research, 2009, vol. 29, pp. 2739–2745.
Hori T., Ikehara T., Takatsuka S., Fukuoka T., Tendo M., Tezuka K., Dan N., Nishino H., Hirakawa K. Gan Kagaku Ryoho, 2011, vol. 38, pp. 293–295.
Vannucci L., Sima P., Vetvicka V., Kˇrižan J. American Journal of Immunology, 2017, vol. 13, pp. 50–61. https://doi.org/10.3844/ajisp.2017.50.61.
Abdel-Mohsen A.M., Abdel-Rahman R.M., Fouda M.M.G., Vojtova L., Uhrova L., Hassan A.F., Al-Deyab S.S., El-Shamy I.E., Jancar J. Carbohydr. Polym., 2014, vol. 102, pp. 238–245. https://doi.org/10.1016/j.carbpol.2013.11.040.
Koenig S. Production of microbial hydrocolloids from renewable resources. München, 2019, 216 p.
Sutivisedsak N., Leathers T.D., Price N.P.J. Springerplus, 2013, vol. 2, 476. https://doi.org/10.1186/2193-1801-2-476.
Saetang N., Ramaraj R., Unpaprom Y. Biomass Conversion and Biorefinery, 2022, vol. 14, pp. 2707–2719. https://doi.org/10.1007/s13399-022-02384-6.
Zhao S., Gao Q., Rong C., Wang S., Zhao Z., Liu Y. J. Fungi., 2020, vol. 6. https://doi.org/10.3390/jof6040269.
Mansour A., Daba A., Baddour N., El-Saadani M., Aleem E. Journal of Cancer Research and Clinical Oncology, 2012, vol. 138, pp. 1579–1596. https://doi.org/10.1007/s00432-012-1224-0.
Zhou B., Fu Q., Song S.S., Zheng H.L., Wei Y.Z. Bangladesh Journal of Pharmacology, 2015, vol. 10, pp. 759–764. https://doi.org/10.3329/bjp.v10i4.23834.
Lee S., Ki C.S. Carbohydr. Polym., 2020, vol. 229. https://doi.org/10.1016/j.carbpol.2019.115555.
Atiq A., Parhar I. Molecules, 2020, vol. 25. https://doi.org/10.3390/molecules25214895.
Matsumoto T., Numata M., Anada T., Mizu M., Koumoto K., Sakurai K., Nagasaki T., Shinkai S. Biochimica et Bio-physica Acta, 2004, vol. 1670, pp. 91–104. https://doi.org/10.1016/j.bbagen.2003.10.019.
Minato K. Diet Components Immune Funct, 2010. https://doi.org/10.1007/978-1-60761-061-8.
Bohn J.A., BeMiller J.N. Carbohydr Polym., 1995, vol. 28, pp. 3–14. https://doi.org/10.1016/0144-8617(95)00076-3.
Mao C.F., Hsu M.C., Hwang W.H. Carbohydr Polym., 2007, vol. 68, pp. 502–510. https://doi.org/10.1016/j.carbpol.2006.11.003.
He X., Wang X., Fang J., Chang Y., Ning N., Guo H., Huang L., Huang X., Zhao Z. Int J Biol Macromol., 2017, vol. 101, pp. 910–921. https://doi.org/10.1016/j.ijbiomac.2017.03.177.
Mayell M. Alternative Medicine Review, 2001, vol. 6, pp. 48–60.
Seo Y.R., Patel D.K., Shin W.C., Sim W.S., Lee O.H., Lim K.T. Biomed Research International, 2019, vol. 2019. https://doi.org/10.1155/2019/7528609.
Wu J.Y., Siu K.C., Geng P. Foods, 2021, vol. 10, p. 95. https://doi.org/10.3390/foods10010095.
Masuda Y., Inoue H., Ohta H., Miyake A., Konishi M., Nanba H. International Journal of Cancer, 2013, vol. 133, pp. 108–119.
Kodama N., Murata Y., Asakawa A., Inui A., Hayashi M., Sakai N., Nanba H. Nutrition, 2005, vol. 21, pp. 624–629. https://doi.org/10.1016/j.nut.2004.09.021.
Nie X., Shi B., Ding Y., Tao W. International Journal of Biological Macromolecules, 2006, vol. 39, vol. 228–233. https://doi.org/10.1016/j.ijbiomac.2006.03.030.
Lema D.R., Iglesias O.M., Portela C.F.A., Blanco A.R., Ayerbes M.V., Díaz A.D., Pais A.C., Prego C., Figueroa A. International Journal of Medical Sciences, 2019, vol. 16, pp. 231–240. https://doi.org/10.7150/ijms.28811.
Shomori K., Yamamoto M., Arifuku I., Teramachi K., Ito H. Oncology Reports, 2009, vol. 22, pp. 615–620. https://doi.org/10.3892/or_00000480.
Gonzaga M.L.C., Ricardo N.M.P.S., Heatley F., Soares S. de A. Carbohydrate Polymers, 2005, vol. 60, no. 1, pp. 43–49. https://doi.org/10.1016/j.carbpol.2004.11.022.
Di F., Cheng W., Li L., Pu C., Sun R., Zhang J., Wang C., Li M. Fermentation, 2024, vol. 10, 292. https://doi.org/10.3390/fermentation10060292.
Tian L., Roos Y.H., Gómez-Mascaraque L.G., Lu X., Miao S. Polymers, 2023, vol. 15. https://doi.org/10.3390/polym15071771.
Araújo-Rodrigues H., Sousa A.S., Relvas B.J., Tavaria F.K. Carbohydrate Polymers, 2024, vol. 333. https://doi.org/10.1016/j.carbpol.2024.121978.
Jones M., Kujundzic M., John S., Bismarck A. Marine Drugs, 2020, vol. 18, no. 1. https://doi.org/10.3390/md18010064.
Synytsya A., Nov´ak M. Carbohydrate Polymers, 2013, vol. 92, no. 1, pp. 792–809. https://doi.org/10.1016/j.carbpol.2012.09.077.
Wang H., Ma J.X., Zhou M., Si J., Cui B.K. Frontiers in Microbiology, 2022, vol. 13. https://doi.org/10.3389/fmicb.2022.965934.
Gong P., Wang S., Liu M., Chen F., Yang W., Chang X., Liu N., Zhao Y., Wang J., Chen X. Carbohydrate Research, 2020, vol. 494. https://doi.org/10.1016/j.carres.2020.108037.
Tian B., Geng Y., Xu T., Zou X., Mao R., Pi X., Sun P. Frontiers in Nutrition, 2022, vol. 9, pp. 1–17. https://doi.org/10.3389/fnut.2022.858585.
Ferreira S.S., Passos C.P., Madureira P., Vilanova M., Coimbra M.A. Carbohydrate Polymers, 2015, vol. 132, pp. 378–396. https://doi.org/10.1016/j.carbpol.2015.05.079.
Li X., He Y., Zeng P., Liu Y., Zhang M., Hao C., Wang H., Lv Z., Zhang L. Journal of Cellular and Molecular Medi-cine, 2019, vol. 23, no. 1, pp. 4–20. https://doi.org/10.1111/jcmm.13564.
Thimmaraju A., Govindan S., Rajendran A., Ramani P., Pateiro M., Lorenzo J.M. International Journal of Food Sci-ence & Technology, 2023, vol. 58, no. 6, pp. 3478–3487. https://doi.org/10.1111/ijfs.16439.
Rizkyana A.D., Ho T.C., Roy V.C., Park J.S., Kiddane A.T., Do Kim G., Chun B.S. Journal of Supercritical Fluids, 2022, vol. 179. https://doi.org/10.1016/j.supflu.2021.105412.
Zhao J., Hu Y., Qian C., Hussain M., Liu S., Zhang A., Sun P. Biology, 2023, vol. 12, no. 1, p. 122. https://doi.org/10.3390/biology12010122.
Deveci E., Çayan F., Tel-Çayan G., Duru M.E. Journal of Food Biochemistry, 2019, vol. 43, no. 9, pp. 1–13. https://doi.org/10.1111/jfbc.12965.
Zhang L., Hu Y., Duan X., Tang T., Shen Y., Hu B., Liu A., Chen H., Li C., Liu Y. International Journal of Biologi-cal Macromolecules, 2018, vol. 113, pp. 1–7. https://doi.org/10.1016/j.ijbiomac.2018.02.084.
Sarkar R., Nandan C.K., Bhunia S.K., Maiti S., Maiti T.K., Sikdar S.R., Islam S.S. Carbohydrate Research, 2011, vol. 347, no. 1, pp. 107–113. https://doi.org/10.1016/j.carres.2011.10.043.
Rout D., Mondal S., Chakraborty I., Islam S.S. Carbohydrate Research, 2007, vol. 343, no. 5, pp. 982–987. https://doi.org/10.1016/j.carres.2007.12.022.
Zhang X., Cai Z., Mao H., Hu P., Li X. International Journal of Biological Macromolecules, 2021, vol. 166, pp. 1387–1395. https://doi.org/10.1016/j.ijbiomac.2020.11.018.
Bae I.Y., Kim H.W., Yoo H.J., Kim E.S., Lee S., Park D.Y., Lee H.G. Food Research International, 2013, vol. 51, no. 1, pp. 195–200. https://doi.org/10.1016/j.foodres.2012.12.008.
Chen L., Ge M.-D., Zhu Y.-J., Song Y., Cheung P.C.K., Zhang B.-B., Liu L.-M. Carbohydrate Polymers, 2019, vol. 223. https://doi.org/10.1016/j.carbpol.2019.115076.
Surenjav U., Zhang L., Xu X., Zhang X., Zeng F. Carbohydrate Polymers, 2006, vol. 63, no. 1, pp. 97–104. https://doi.org/10.1016/j.carbpol.2005.08.011.
Du B., Nie S., Peng F., Yang Y., Xu B. Food Frontiers, 2022, vol. 3, no. 4, pp. 631–640. https://doi.org/10.1002/fft2.150.
Hao W., Hao C., Wu C., Xu Y., Jin C. Chemosphere, 2022, vol. 288. https://doi.org/10.1016/j.chemosphere.2021.132556.
Bonfili L., Cecarini V., Gogoi O., Gong C., Cuccioloni M., Angeletti M., Eleuteri A.M. The FEBS Journal, 2021, vol. 288, no. 9, pp. 2836–2855. https://doi.org/10.1111/febs.15571.
Yin C., Noratto G.D., Fan X., Chen Z., Yao F., Shi D., Gao H. Carbohydrate Polymers, 2020, vol. 250. https://doi.org/10.1016/j.carbpol.2020.116942.
Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Reid G. Nature Reviews Gastro-enterology and Hepatology, 2017, vol. 14, no. 8, pp. 491–502. https://doi.org/10.1038/nrgastro.2017.75.
Nowak R., Nowacka-Jechalke N., Juda M., Malm A. European Journal of Nutrition, 2018, vol. 57, no. 4, pp. 1511–1521. https://doi.org/10.1007/s00394-017-1436-9.
Inyod T., Ayimbila F., Payapanon A., Keawsompong S. Bioactive Carbohydrates and Dietary Fibre, 2022, vol. 27, no. 9. https://doi.org/10.1016/j.bcdf.2021.100298.
Lai Y., Fang Q., Guo X., Lei H., Zhou Q., Wu N., Song C. Journal of Food Measurement and Characterization, 2022, vol. 17, pp. 1–11. https://doi.org/10.1007/s11694-022-01596-8.
Khan I., Huang G., Li X.A., Liao W., Leong W.K., Xia W., Hsiao W.L.W. Pharmacological Research, 2019, vol. 148. https://doi.org/10.1016/j.phrs.2019.104448.
Wang M., Wichienchot S., He X., Fu X., Huang Q., Zhang B. Trends in Food Science & Technology, 2019, vol. 88, no. 2, pp. 1–9. https://doi.org/10.1016/j.tifs.2019.03.005.
Farias D.D.P., de Araújo F.F., Neri-Numa I.A., Pastore G.M. Trends in Food Science & Technology, 2019, vol. 93, no. 9, pp. 23–35. https://doi.org/10.1016/j.tifs.2019.09.004.
Copyright (c) 2025 Chemistry of plant raw material

This work is licensed under a Creative Commons Attribution 4.0 International License.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.







